The present study aims at the free vibration analysis of double tapered columns. Foundation is assumed to be elastic and the effects of self-weight and tip mass with significant moment of inertia are considered. The governing equation of motion is obtained using the Hamilton principle, based on both the Euler–Bernoulli and Timoshenko beam models. Applying the power series method of Frobenius, the base solutions of the governing equations are obtained in the form of a power series via general recursive relations. Applying the boundary conditions, the natural frequencies of the beam/column are obtained using both models. The obtained results are compared with literature and a very good agreement is achieved. Subsequently, comprehensive studies are performed to provide an insight into the variation of the natural frequencies and instability conditions of the beam with respect to the tip mass, self-weight, taper ratio, slenderness, and foundation stiffness and eventually some general conclusions are drawn.

References

References
1.
Caruntu
,
D. I.
,
2007
, “
Classical Jacobi Polynomials, Closed-Form Solutions for Transverse Vibrations
,”
J. Sound Vib.
,
306
(
3–5
), pp.
467
494
.10.1016/j.jsv.2007.05.046
2.
Caruntu
,
D. I.
,
2005
, “
Self-Adjoint Differential Equations for Classical Orthogonal Polynomials
,”
J. Comput. Appl. Math.
,
180
(
1
), pp.
107
118
.10.1016/j.cam.2004.10.004
3.
Auciello
,
N. M.
, and
Nole
,
G.
,
1998
, “
Vibrations of a Cantilever Tapered Beam With Varying Section Properties and Carrying a Mass at the Free End
,”
J. Sound Vib.
,
214
(
1
), pp.
105
119
.10.1006/jsvi.1998.1538
4.
Rosa
,
M. A. D.
, and
Auciello
,
N. M.
,
1996
, “
Free Vibrations of Tapered Beams With Flexible Ends
,”
Comput. Struct.
,
60
(
2
), pp.
197
202
.10.1016/0045-7949(95)00397-5
5.
Naguleswaran
,
S.
,
1994
, “
A Direct Solution for the Transverse Vibration of Euler–Bernoulli Wedge and Cone Beams
,”
J. Sound Vib.
,
172
(
3
), pp.
289
304
.10.1006/jsvi.1994.1176
6.
Craver
,
W. L.
, and
Jampala
,
P.
,
1993
, “
Transverse Vibrations of a Linearly Tapered Cantilever Beam With Constraining Springs
,”
J. Sound Vib.
,
166
(
3
), pp.
521
529
.10.1006/jsvi.1993.1310
7.
Goel
,
R. P.
,
1976
, “
Transverse Vibrations of Tapered Beams
,”
J. Sound Vib.
,
47
(
1
), pp.
1
7
.10.1016/0022-460X(76)90403-X
8.
Storti
,
D.
, and
Aboelnaga
,
Y.
,
1987
, “
Bending Vibrations of a Class of Rotating Beams With Hypergeometric Solutions
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
311
314
.10.1115/1.3173013
9.
Duan
,
W.
,
Quek
,
S.
, and
Wang
,
Q.
,
2005
, “
Generalized Hypergeometric Function Solutions for Transverse Vibration of a Class of Non-Uniform Annular Plates
,”
J. Sound Vib.
,
287
(
4–5
), pp.
785
807
.10.1016/j.jsv.2004.11.027
10.
Naguleswaran
,
S.
,
1994
, “
Vibration in the Two Principal Planes of a Non-Uniform Beam of Rectangular Cross-Section, One Side of Which Varies as the Square Root of the Axial Co-Ordinate
,”
J. Sound Vib.
,
172
(
3
), pp.
305
319
.10.1006/jsvi.1994.1177
11.
Naguleswaran
,
S.
,
1995
, “
The Vibration of a Complete Euler–Bernoulli Beam of Constant Depth and Breadth Proportional to Axial Co-Ordinate Raised to a Positive Exponent
,”
J. Sound Vib.
,
187
(
2
), pp.
311
327
.10.1006/jsvi.1995.0523
12.
Firouz-Abadi
,
R.
,
Haddadpour
,
H.
, and
Novinzadeh
,
A.
,
2007
, “
An Asymptotic Solution to Transverse Free Vibrations of Variable-Section Beams
,”
J. Sound Vib.
,
304
(
3–5
), pp.
530
540
.10.1016/j.jsv.2007.02.030
13.
Raju
,
K. K.
, and
Rao
,
G. V.
,
1998
, “
Free Vibration Behavior of Tapered Beam Columns
,”
J. Eng. Mech.
,
114
(
5
), pp.
889
892
.10.1061/(ASCE)0733-9399(1988)114:5(889)
14.
Wang
,
C.
, and
Wang
,
C. M.
,
2012
, “
Exact Vibration Solution for Exponentially Tapered Cantilever With Tip Mass
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041012
.10.1115/1.4005835
15.
Eisenberger
,
M.
,
1991
, “
Buckling Loads for Variable Cross-Section Members With Variable Axial Forces
,”
Int. J. Solid Struct.
,
27
(
2
), pp.
135
143
.10.1016/0020-7683(91)90224-4
16.
Elfelsoufi
,
Z.
, and
Azrar
,
L.
,
2005
, “
Buckling, Flutter and Vibration Analyses of Beams by Integral Equation Formulations
,”
Comput. Struct.
,
83
(
31–32
), pp.
2632
2649
.10.1016/j.compstruc.2005.04.001
17.
Rahai
,
A. R.
, and
Kazemi
,
S.
,
2008
, “
Buckling Analysis of Non-Prismatic Columns Based on Modified Vibration Modes
,”
J. Commun. Nonlinear Sci. Numer. Simul.
,
13
(
8
), pp.
1721–1735
.10.1016/j.cnsns.2006.09.009
18.
Au
,
F. T. K.
,
Zheng
,
D. Y.
, and
Cheung
,
Y. K.
,
1999
, “
Vibration and Stability of Non-Uniform Beams With Abrupt Changes of Cross-Section by Using C1 Modified Beam Vibration Functions
,”
Appl. Math. Model.
,
23
(
1
), pp.
19
34
.10.1016/S0307-904X(98)10045-8
19.
Huang
,
Y.
, and
Li
,
X.-F.
,
2011
, “
Buckling Analysis of Nonuniform and Axially Graded Columns With Varying Flexural Rigidity
,”
J. Eng. Mech.
,
137
(
1
), pp.
73
81
.10.1061/(ASCE)EM.1943-7889.0000206
20.
Darbandi
,
S.
,
Firouz-Abadi
,
R.
, and
Haddadpour
,
H.
,
2010
, “
Buckling of Variable Section Columns Under Axial Loading
,”
J. Eng. Mech.
,
136
(
4
), pp.
472
476
.10.1061/(ASCE)EM.1943-7889.0000096
21.
Banerjee
,
J.
,
Su
,
H.
, and
Jackson
,
D.
,
2006
, “
Free Vibration of Rotating Tapered Beams Using the Dynamic Stiffness Method
,”
J. Sound Vib.
,
298
(
4–5
), pp.
1034
1054
.10.1016/j.jsv.2006.06.040
22.
Banerjee
,
J.
,
2001
, “
Dynamic Stiffness Formulation and Free Vibration Analysis of Centrifugally Stiffened Timoshenko Beams
,”
J. Sound Vib.
,
247
(
1
), pp.
97
115
.10.1006/jsvi.2001.3716
23.
Du
,
H.
,
Lim
,
M.
, and
Liew
,
K.
,
1994
, “
A Power Series Solution for Vibration of a Rotating Timoshenko Beam
,”
J. Sound Vib.
,
175
(
4
), pp.
505
523
.10.1006/jsvi.1994.1342
You do not currently have access to this content.