In the current study, the torsional vibration of carbon nanotubes is examined using the strain gradient theory and molecular dynamic simulations. The model developed based on this gradient theory enables us to interpret size effect through introducing material length scale parameters. The model accommodates the modified couple stress and classical models when two or all material length scale parameters are set to zero, respectively. Using Hamilton's principle, the governing equation and higher-order boundary conditions of carbon nanotubes are obtained. The generalized differential quadrature method is utilized to discretize the governing differential equation of the present model along with two boundary conditions. Then, molecular dynamic simulations are performed for a series of carbon nanotubes with different aspect ratios and boundary conditions, the results of which are matched with those of the present strain gradient model to extract the appropriate value of the length scale parameter. It is found that the present model with properly calibrated value of length scale parameter has a good capability to predict the torsional vibration behavior of carbon nanotubes.

References

References
1.
Zhang
,
W. D.
,
Wen
,
Y.
,
Liu
,
S. M.
,
Tjiu
,
W. C.
,
Xu
,
G. Q.
, and
Gan
,
L. M.
,
2002
, “
Synthesis of Vertically Aligned Carbon Nanotubes on Metal Deposited Quartz Plates
,”
Carbon
,
40
, pp.
1981
1989
.10.1016/S0008-6223(02)00052-0
2.
Zhao
,
C.
,
Song
,
Y.
,
Ren
,
J.
, and
Qu
,
X.
,
2009
, “
A DNA Nanomachine Induced by Single-Walled Carbon Nanotubes on Gold Surface
,”
Biomaterials
,
30
, pp.
1739
1745
.10.1016/j.biomaterials.2008.12.034
3.
Qin
,
C.
,
Shen
,
J.
,
Hu
,
Y.
, and
Ye
,
M.
,
2009
, “
Facile Attachment of Magnetic Nanoparticles to Carbon Nanotubes Via Robust Linkages and Its Fabrication of Magnetic Nanocomposites
,”
Compos. Sci. Technol.
,
69
, pp.
427
431
.10.1016/j.compscitech.2008.11.011
4.
Yan
,
X. B.
,
Chen
,
X. J.
,
Tay
,
B. K.
, and
Khor
,
K. A.
,
2007
, “
Transparent and Flexible Glucose Via Layer-by-Layer Assembly of Multi-Wall Carbon Nanotubes and Glucose Oxidase
,”
Electrochem. Commun.
,
9
, pp.
1269
1275
.10.1016/j.elecom.2006.12.022
5.
Liu
,
L.
, and
Zhang
,
Y.
,
2004
, “
Multi-Wall Carbon Nanotube as a New Infrared Detected Material
,”
Sensors Actuators A
,
116
, pp.
394
397
.10.1016/j.sna.2004.05.016
6.
Chen
,
Y. L.
,
Liu
,
B.
,
Wu
,
J.
,
Huang
,
Y.
,
Jiang
,
H.
, and
Hwang
,
K. C.
,
2008
, “
Mechanics of Hydrogen Storage in Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
56
, pp.
3224
3241
.10.1016/j.jmps.2008.07.007
7.
Ansari
,
R.
,
Sahmani
,
S.
, and
Arash
,
B.
,
2010
, “
Nonlocal Plate Model for Free Vibrations of Single-Layered Graphene Sheets
,”
Phys. Lett. A
,
375
, pp.
53
62
.10.1016/j.physleta.2010.10.028
8.
Arash
,
B.
, and
Ansari
,
R.
,
2010
, “
Evaluation of Nonlocal Parameter in the Vibrations of Single-Walled Carbon Nanotubes With Initial Strain
,”
Physica E
,
42
, pp.
2058
2064
.10.1016/j.physe.2010.03.028
9.
Yang
,
J.
,
Ke
,
L. L.
, and
Kitipornchai
,
S.
,
2010
, “
Nonlinear Free Vibration of Single-Walled Carbon Nanotubes Using Nonlocal Timoshenko Beam Theory
,”
Physica E
,
42
, pp.
1727
1735
.10.1016/j.physe.2010.01.035
10.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
,
2010
, “
Terahertz Wave Characteristics of a Single-Walled Carbon Nanotube Containing a Fluid Flow Using the Nonlocal Timoshenko Beam Model
,”
Physica E
,
42
(
5
), pp.
1706
1712
.10.1016/j.physe.2010.01.028
11.
Ansari
,
R.
,
Sahmani
,
S.
, and
Rouhi
,
H.
,
2011
, “
Rayleigh-Ritz Axial Buckling Analysis of Single-Walled Carbon Nanotubes With Different Boundary Conditions
,”
Phys. Lett. A
,
375
, pp.
1255
1263
.10.1016/j.physleta.2011.01.046
12.
Ansari
,
R.
, and
Sahmani
,
S.
,
2011
, “
Bending Behavior and Buckling of Nanobeams Including Surface Stress Effects Corresponding to Different Beam Theories
,”
Int. J. Eng. Sci.
,
49
(11), pp.
1244
1255
.10.1016/j.ijengsci.2011.01.007
13.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
,
1962
, “
Effects of Couple-Stresses in Linear Elasticity
,”
Arch. Rat. Mech. Anal.
,
11
, pp.
415
448
.10.1007/BF00253946
14.
Koiter
,
W. T.
,
1964
, “
Couple Stresses in the Theory of Elasticity I and II
,”
Proc. Koninklijke Nederlandse Akad. van Wetenschappen (B)
,
67
, pp.
17
44
.
15.
Eringen
,
A. C.
, and
Suhubi
,
E. S.
,
1964
, “
Nonlinear Theory of Simple Microelastic Solid—I
,”
Int. J. Eng. Sci.
,
2
, pp.
189
203
.10.1016/0020-7225(64)90004-7
16.
Eringen
,
A. C.
, and
Suhubi
,
E. S.
,
1964
, “
Nonlinear Theory of Simple Microelastic Solid—II
,”
Int. J. Eng. Sci.
,
2
, pp.
389
404
.10.1016/0020-7225(64)90017-5
17.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Rat. Mech. Anal.
,
16
, pp.
51
78
.10.1007/BF00248490
18.
Toupin
,
R. A.
,
1964
, “
Theory of Elasticity With Couple Stresses
,”
Arch. Rat. Mech. Anal.
,
17
, pp.
85
112
.10.1007/BF00253050
19.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
, pp.
417
438
.10.1016/0020-7683(65)90006-5
20.
Mindlin
,
R. D.
, and
Eshel
,
N. N.
,
1968
, “
On First Strain-Gradient Theories in Linear Elasticity
,”
Int. J. Solids Struct.
,
4
, pp.
109
124
.10.1016/0020-7683(68)90036-X
21.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
, pp.
4703
4710
.10.1063/1.332803
22.
Vardoulaksi
, I
.
,
Exadaktylos
,
G.
, and
Kourkoulis
,
S. K.
,
1998
, “
Bending of Marble With Intrinsic Length Scales: A Gradient Theory With Surface Energy and Size Effects
,”
J. Phys. IV
,
8
, pp.
399
406
.10.1051/jp4:1998849
23.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and Tong, P.,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
, pp.
2731
2743
.10.1016/S0020-7683(02)00152-X
24.
Akgöz
,
B.
, and
Civalek
,
Ö.
,
2011
, “
Stability Analysis of Carbon Nanotubes (CNTS) Based on Modified Couple Stress Theory
,”
Int. Adv. Technol. Symp.
,
6
, pp.
71
74
.10.1142/S0219876212400324
25.
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2011
, “
Flow-Induced Vibration and Instability of Embedded Double-Walled Carbon Nanotubes Based on a Modified Couple Stress Theory
,”
Physica E
,
43
, pp.
1031
1039
.10.1016/j.physe.2010.12.010
26.
Gheshlaghi
,
B.
,
Hasheminejad
,
S. M.
, and
Abbasian
,
S.
,
2010
, “
Size Dependent Torsional Vibration of Nanotubes
,”
Physica E
,
43
, pp.
45
48
.10.1016/j.physe.2010.06.015
27.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
, pp.
1825
1857
.10.1016/0022-5096(93)90072-N
28.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
, Wang, J., and Tong, P.,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
, pp.
1477
1508
.10.1016/S0022-5096(03)00053-X
29.
Kong
,
S.
,
Zhou
,
S.
,
Nie
,
Z.
, and
Wang
,
K.
,
2009
, “
Static and Dynamic Analysis of Micro Beams Based on Strain Gradient Elasticity Theory
,”
Int. J. Eng. Sci.
,
47
, pp.
487
498
.10.1016/j.ijengsci.2008.08.008
30.
Wang
,
B.
,
Zhao
,
J.
, and
Zhou
,
S.
,
2010
, “
A Micro Scale Timoshenko Beam Model Based on Strain Gradient Elasticity Theory
,”
Eur. J. Mech. A
,
29
, pp.
591
599
.10.1016/j.euromechsol.2009.12.005
31.
Ansari
,
R.
,
Gholami
,
R.
, and
Sahmani
,
S.
,
2011
, “
Free Vibration of Size-Dependent Functionally Graded Microbeams Based on a Strain Gradient Theory
,”
Compos. Struct.
,
94
, pp.
221
228
.10.1016/j.compstruct.2011.06.024
32.
Rao
,
S. S.
,
2007
,
Vibration of Continuous Systems
,
Wiley
,
Hoboken, NJ
.
33.
Shu
,
C.
,
Chen
,
W.
, and
Du
,
H.
,
2000
, “
Free Vibration Analysis of Curvilinear Quadrilateral Plates by the Differential Quadrature Method
,”
J. Comput. Phys.
,
163
(
2
), pp.
452
466
.10.1006/jcph.2000.6576
34.
Haftchenari
,
H.
,
Darvizeh
,
M.
,
Darvizeh
,
A.
,
Ansari
,
R.
, and
Sharma
,
C. B.
,
2007
, “
Dynamic Analysis of Composite Cylindrical Shells Using Differential Quadrature Method (DQM)
,”
Compos. Struct.
,
78
(
2
), pp.
292
298
.10.1016/j.compstruct.2005.10.003
35.
De Rosa
,
M. A.
,
Auciello
,
N. M.
, and
Lippiello
,
M.
,
2008
, “
Dynamic Stability Analysis and DQM for Beams With Variable Cross-Section
,”
Mech. Res. Commun.
,
35
(
3
), pp.
187
192
.10.1016/j.mechrescom.2007.10.010
36.
Hu
,
Y. J.
,
Zhu
,
Y. Y.
, and
Cheng
,
C. J.
,
2009
, “
QM for Dynamic Response of Fluid-Saturated Visco-Elastic Porous Media
,”
Int. J. Solids Struct.
,
46
(
7–8
), pp.
1667
1675
.10.1016/j.ijsolstr.2008.12.006
37.
Sepahi
,
O.
,
Forouzan
,
M. R.
, and
Malekzadeh
,
P.
,
2010
, “
Large Deflection Analysis of Thermo-Mechanical Loaded Annular FGM Plates on Nonlinear Elastic Foundation Via DQM
,”
Compos. Struct.
,
92
(
10
), pp.
2369
2378
.10.1016/j.compstruct.2010.03.011
38.
Pradhan
,
S. C.
, and
Murmu
,
T.
,
2010
, “
Application of Nonlocal Elasticity and DQM in the Flapwise Bending Vibration of a Rotating Nanocantilever
,”
Physica E
,
42
(
7
), pp.
1944
1949
.10.1016/j.physe.2010.03.004
39.
Tersoff
,
J.
,
1988
, “
New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
,
37
, pp.
6991
7000
.10.1103/PhysRevB.37.6991
40.
Brenner
,
D. W.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
, pp.
9458
9471
.10.1103/PhysRevB.42.9458
41.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1986
,
Computer Simulation of Liquids
, Oxford Science Publication,
New York
.
42.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
, pp.
1695
1697
.10.1103/PhysRevA.31.1695
43.
Shen
,
L.
, and
Li
,
J.
,
2004
, “
Transversely Isotropic Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
69
, p.
045414
.10.1103/PhysRevB.69.045414
You do not currently have access to this content.