This work presents an effective method to identify the tip locations of an internal crack in cantilever plates based on a Kriging surrogate model. Samples of varying crack parameters (tip locations) and their corresponding root mean square (RMS) of random responses are used to construct the initial Kriging surrogate model. Moreover, the pseudo excitation method (PEM) is employed to speed up the spectral analysis. For identifying crack parameters based on the constructed Kriging model, a robust stochastic particle swarm optimization (SPSO) algorithm is adopted for enhancing the global searching ability. To improve the accuracy of the surrogate model without using extensive samples, a small number of samples are first used. Then an optimal point-adding process is carried out to reduce computational cost. Numerical studies of a cantilever plate with an internal crack are performed. The effectiveness and efficiency of this method are demonstrated by the identified results. The effect of initial sampling size on the precision of the identified results is also investigated.

References

References
1.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
,
1998
, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock. Vib.
,
30
(
2
), pp.
91
105
.10.1177/058310249803000201
2.
Salawu
,
O. S.
,
1997
, “
Detection of Structural Damage Through Changes in Frequency: A Review
,”
Eng. Struct.
,
19
(
7
), pp.
718
723
.10.1016/S0141-0296(96)00149-6
3.
Gudmundson
,
P.
,
1983
, “
The Dynamic Behaviour of Slender Structures With Cross-Sectional Cracks
,”
J. Mech. Phys. Solids.
,
31
(
4
), pp.
329
345
.10.1016/0022-5096(83)90003-0
4.
Liang
,
R. Y.
,
Choy
,
F. K.
, and
Hu
,
J.
,
1991
, “
Detection of Cracks in Beam Structures Using Measurements of Natural Frequencies
,”
J. Franklin Inst.
,
328
(
4
), pp.
505
518
.10.1016/0016-0032(91)90023-V
5.
Ostachowicz
,
W. M.
, and
Krawkczuk
,
M.
,
1991
, “
Analysis of the Effect of Cracks on the Natural Frequencies of a Cantilever Beam
,”
J. Sound. Vib.
,
150
(
2
), pp.
191
201
.10.1016/0022-460X(91)90615-Q
6.
Lele
,
S. P.
, and
Maiti
,
S. K.
,
2002
, “
Modelling of Transverse Vibration of Short Beams for Crack Detection and Measurement of Crack Extension
,”
J. Sound. Vib.
,
257
(
3
), pp.
559
583
.10.1006/jsvi.2002.5059
7.
Krawczuk
,
M.
,
Palacz
,
M.
, and
Ostachowicz
,
W.
,
2004
, “
Wave Propagation in Plate Structures for Crack Detection
,”
Finite. Elem. Anal. Des.
,
40
(
9–10
), pp.
991
1004
.10.1016/j.finel.2003.03.001
8.
Horibe
,
T.
, and
Watanabe
,
K.
,
2006
, “
Crack Identification of Plates Using Genetic Algorithm
,”
JSME Int. J.
,
49
, pp.
403
410
.10.1299/jsmea.49.403
9.
Hadjileontiadis
,
L. J.
, and
Douka
,
E.
,
2007
, “
Crack Detection in Plates Using Fractal Dimension
,”
Eng. Struct.
,
29
(
7
), pp.
1612
1625
.10.1016/j.engstruct.2006.09.016
10.
Lam
,
H. F.
, and
Yin
,
T.
,
2010
, “
Statistical Detection of Multiple Cracks on Thin Plates Utilizing Dynamic Response
,”
Eng. Struct.
,
32
(
10
), pp.
3145
3152
.10.1016/j.engstruct.2010.06.002
11.
Bagheri
,
A.
,
Ghodrati
Amiri
,
G.
, and
Seyed
Razzaghi
,
S. A.
,
2009
, “
Vibration-Based Damage Identification of Plate Structures Via Curvelet Transform
,”
J. Sound. Vib.
,
327
(
3–5
), pp.
593
603
.10.1016/j.jsv.2009.06.019
12.
Moore
,
E. Z.
,
Murphy
,
K. D.
, and
Nichols
,
J. M.
,
2011
, “
Crack Identification in a Freely Vibrating Plate Using Bayesian Parameter Estimation
,”
Mech. Syst. Signal. Pr.
,
25
(
6
), pp.
2125
2134
.10.1016/j.ymssp.2011.01.016
13.
Atalla
,
M. J.
, and
Inman
,
D. J.
,
1998
, “
On Model Updating Using Neural Network
,”
Mech. Syst. Signal. Pr.
,
12
(
1
), pp.
135
161
.10.1006/mssp.1997.0138
14.
Lee
,
J. J.
,
Lee
,
J. W.
,
Yi
,
J. H.
,
Yun
,
C. B.
, and
Jung
,
H. Y.
,
2005
, “
Neural Networks-Based Damage Detection for Bridges Considering Errors in Baseline Finite Element Models
,”
J. Sound. Vib.
,
280
(
3–5
), pp.
555
578
.10.1016/j.jsv.2004.01.003
15.
Shyy
,
W.
,
Papila
,
N.
,
Vaidyanathan
,
R.
, and
Tucker
,
K.
,
2001
, “
Global Design Optimization for Aerodynamics and Rocket Propulsion Components
,”
Prog. Aerosp. Sci.
,
37
(
1
), pp.
59
118
.10.1016/S0376-0421(01)00002-1
16.
Ren
,
W. X.
, and
Chen
,
H. B.
,
2010
, “
Finite Element Model Updating in Structural Dynamics by Using the Response Surface Method
,”
Eng. Struct.
,
32
(
8
), pp.
2455
2465
.10.1016/j.engstruct.2010.04.019
17.
Cundy
,
A. L.
,
2002
, “
Use of Response Surface Metamodels in Damage Identification of Dynamic Structures
,” M.S. thesis,
Virgina Polytechnic Institute and State University
,
Blackburg, VA
.
18.
Faravelli
,
L.
,
Casciati
,
S.
,
2004
, “
Structural Damage Detection and Localization by Response Change Diagnosis
,”
Prog. Struct. Eng. Mater.
,
6
(
2
), pp.
104
115
.10.1002/pse.171
19.
Casciati
,
S.
,
2010
, “
Response Surface Models to Detect and Localize Distributed Cracks in a Complex Continuum
,”
ASCE J. Eng. Mech.
,
136
(
9
), pp.
1131
1142
.10.1061/(ASCE)EM.1943-7889.0000148
20.
Casciati
,
S.
,
2010
, “
Statistical Approach to a SHM Benchmark Problem
,”
Smart Struct. Syst.
,
6
(
1
), pp.
17
27
.
21.
Huang
,
Z. J.
,
Wang
,
C. G.
,
Chen
,
J.
, and
Tian
,
H.
,
2011
, “
Optimal Design of Aeroengine Turbine Disc Based on Kriging Surrogate Models
,”
Comput. Struct.
,
89
(
1–2
), pp.
27
37
.10.1016/j.compstruc.2010.07.010
22.
Gao
,
Y. H.
,
Turng
,
L. S.
, and
Wang
,
X. C.
,
2008
, “
Adaptive Geometry and Process Optimization for Injection Molding Using Kriging Surrogate Model Trained by Numerical Simulation
,”
Adv. Polym. Tech.
,
26
(
5
), pp.
1
16
.10.1002/adv.20116
23.
Bilicz
,
S.
,
Vazquez
,
E.
,
Lambert
,
M.
,
Gyimóthy
,
S.
, and
Pávó
,
J.
,
2009
, “
Characterization of a 3D Defect Using the Expected Improvement Algorithm
,”
COMPEL Int. J. Comput. Math. Electr. Electron. Eng.
,
28
(
4
), pp.
851
864
.10.1108/03321640910958964
24.
Douvenot
,
R.
,
Lambert
,
M.
, and
Lesselier
,
D.
,
2011
, “
Adaptive Metamodels for Crack Characterization in Eddy-Current Testing
,”
IEEE Trans. Magn.
,
47
(
4
), pp.
746
755
.10.1109/TMAG.2011.2105883
25.
Douvenot
,
R.
,
Lambert
,
M.
, and
Lesselier
,
D.
,
2010
, “
Particle Optimization With Metamodel for Crack Characterization
,” Proceedings of the URSI International Symposium on Electromagnetic Theory (
EMTS 2010
),
Berlin
, August 16-19, pp. 887–890.10.1109/URSI-EMTS.2010.5637338
26.
Huang
,
C. S.
,
Leissa
,
A. W.
, and
Li
,
R. S.
,
2011
, “
Accurate Vibration Analysis of Thick, Cracked Rectangular Plates
,”
J. Sound. Vib.
,
330
(
9
), pp.
2079
2093
.10.1016/j.jsv.2010.11.007
27.
Ratcliffe
,
C. P.
,
2000
, “
A Frequency and Curvature Based Experimental Method for Locating Damage in Structures
,”
ASME J. Vib. Acoust.
,
122
(
3
), pp.
324
329
.10.1115/1.1303121
28.
Lee
,
J.
,
2009
, “
Identification of Multiple Cracks in a Beam Using Vibration Amplitudes
,”
J. Sound. Vib.
,
326
(
1–2
), pp.
205
212
.10.1016/j.jsv.2009.04.042
29.
Fang
,
S. E.
, and
Perer
,
R.
,
2009
, “
Power Mode Shapes for Early Damage Detection in Linear Structures
,”
J. Sound. Vib.
,
324
, pp.
40
56
.10.1016/j.jsv.2009.02.002
30.
Yang
,
Z.
,
Wang
,
L.
,
Wang
,
H.
,
Ding
,
Y.
, and
Dang
,
X.
,
2009
, “
Damage Detection in Composite Structures Using Vibration Response Under Stochastic Excitation
,”
J. Sound. Vib.
,
325
, pp.
755
768
.10.1016/j.jsv.2009.03.040
31.
Cacciola
,
P.
,
Maugeri
,
N.
, and
Muscolino
,
G.
,
2011
, “
Structural Identification Through the Measure of Deterministic and Stochastic Time-Domain Dynamic Response
,”
Comput. Struct.
,
89
, pp.
1812
1819
.10.1016/j.compstruc.2010.10.013
32.
Liberatore
,
S.
, and
Carman
,
G. P.
,
2004
, “
Power Spectral Density Analysis for Damage Identification and Location
,”
J. Sound. Vib.
,
274
(
3–5
), pp.
761
776
.10.1016/S0022-460X(03)00785-5
33.
Lin
,
J. H.
,
1992
, “
A Fast CQC Algorithm of PSD Matrices for Random Seismic Responses
,”
Comput. Struct.
,
44
(
3
), pp.
683
687
.10.1016/0045-7949(92)90384-C
34.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
435
.10.1214/ss/1177012413
35.
Sakata
,
S.
,
Ashida
,
F.
, and
Zako
,
M.
,
2007
, “
On Applying Kriging-Based Approximate Optimization to Inaccurate Data
,”
Comput. Meth. Appl. Mech. Eng.
,
196
(
13–16
), pp.
2055
2069
.10.1016/j.cma.2006.11.004
36.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global. Optimiz.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
37.
Qi
,
H.
,
Ruan
,
L. M.
,
Zhang
,
H. C.
,
Wang
,
Y. M.
, and
Tan
,
H. P.
,
2007
, “
Inverse Radiation Analysis of a One-Dimensional Participating Slab by Stochastic Particle Swarm Optimizer Algorithm
,”
Int. J. Therm. Sci.
,
46
(
7
), pp.
649
661
.10.1016/j.ijthermalsci.2006.10.002
38.
McKay
,
M. D.
,
Conover
,
W. J.
, and
Beckman
,
R. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.0237/1268522
39.
Visser
,
W. J.
,
1992
, “
Updating Structural Dynamics Models Using Frequency Response Data
,” Ph.D. thesis,
Imperial College of Science, Technology and Medicine
,
London
.
You do not currently have access to this content.