It is recognized that unstable vibration occurs at a rotating speed above the major critical speed by a rotating-conducting-disk type magnetic damper, but not by a rotating-circular-magnet type magnetic damper. In addition, magnetic dampers generally have relatively poor damping performance. In the present work, two new rotating-circular-magnet type magnetic dampers, (which consist of a combined hollow cylinder magnet with alternating directional magnetic poles), are introduced and their design method is presented. Applying the modeling method that the authors have been studying, a prototype magnetic damper with a combined magnet is fabricated and the damping ratios from the analytical results agree well with those from the experimental results. Rotating tests are performed and it is confirmed that unstable vibration does not occur at a rotating speed of more than twice the major critical speed. Based on these findings, an optimally designed magnetic damper with a combined magnet is developed and a damping ratio of 0.25 (damping coefficient of 215 Ns/m) is achieved.

References

References
1.
Okada
,
Y.
,
Nagai
,
B.
, and
Matsuda
,
K.
,
1985
, “
Application of Electro-Magnetic Damper for Reducing the Rotor Vibration
,”
Trans. Jpn. Soc. Mech. Eng.
,
51
(
467
), pp.
1760
1764
(in Japanese).10.1299/kikaic.51.1760
2.
Kasarda
,
M. E. F.
,
Allaire
,
P. E.
,
Humphris
,
R. R.
, and
Barrett
,
L. E.
,
1990
, “
A Magnetic Damper for First-Mode Vibration Reduction in Multimass Flexible Rotors
,”
ASME J. Eng. Gas Turbines Power
,
112
, pp.
463
469
.10.1115/1.2906190
3.
Nagaya
,
K.
,
Hayashi
,
N.
, and
Ohzeki
,
K.
,
2001
, “
Control of Resonance for a Rotating Shaft Levitated by the High Temperature Super Conductor by Using a Rotating Magnetic Damper
,”
J. Mater. Process. Technol.
,
108
, pp.
161
164
.10.1016/S0924-0136(00)00747-0
4.
Fung
,
R. F.
,
Sun
,
J. H.
, and
Hsu
,
S. M.
,
2002
, “
Vibration Control of the Rotating Flexible-Shaft/Multi-Flexible-Disk System With the Eddy-Current Damper
,”
ASME J. Vibr. Acoust.
,
124
, pp.
519
526
.10.1115/1.1502671
5.
Cheah
,
S. K.
, and
Sodano
,
H. A.
,
2008
, “
Novel Eddy Current Damping Mechanism for Passive Magnetic Bearings
,”
J. Vib. Control
,
14
(
11
), pp.
1749
1766
.10.1177/1077546308091219
6.
Laborenz
,
J.
,
Siewert
,
C.
,
Panning
,
L.
,
Wallaschek
,
J.
,
Gerber
,
C.
, and
Masserey
,
P. A.
,
2010
, “
Eddy Current Damping: A Concept Study for Steam Turbine Blading
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
052505
.10.1115/1.3205032
7.
Katayama
,
K.
,
Mori
,
S.
,
Nagai
,
N.
, and
Sueoka
,
A.
,
1993
, “
Study on Self-Excited Vibration in Flexible Rotor Operating Under Static Magnetic Field
,”
5th Asia-Pacific Vibration Conference
, Kitakyushu, Japan, November 14–18, pp.
585
588
.
8.
Frederick
,
J. R.
, and
Darlow
,
M. S.
,
1994
, “
Operation of an Electromagnetic Eddy-Current Damper With a Supercritical Shaft
,”
ASME J. Vibr. Acoust.
,
116
, pp.
578
580
.10.1115/1.2930467
9.
Kligerman
,
Y.
,
Grushkevich
,
A.
, and
Darlow
,
M. S.
,
1998
, “
Analytical and Experimental Evaluation of Instability in Rotordynamic System With Electromagnetic Eddy-Current Damper
,”
ASME J. Vibr. Acoust.
,
120
, pp.
272
278
.10.1115/1.2893817
10.
Kligerman
,
Y.
, and
Gottlieb
,
O.
,
1998
, “
Dynamics of a Rotating System With a Nonlinear Eddy-Current Damper
,”
ASME J. Vibr. Acoust.
,
120
, pp.
848
853
.10.1115/1.2893910
11.
Takayama
,
Y.
,
Sueoka
,
A.
,
Kondou
,
T.
, and
Nagai
,
N.
,
2002
,
Unstable Vibration of a Rotating Machine Caused by a Magnetic Damping Force
,”
Trans. Jpn. Soc. Mech. Eng.
,
68
(
665
), pp.
16
23
(in Japanese). 10.1299/kikaic.68.16
12.
Takayama
,
Y.
,
Sueoka
,
A.
, and
Kondou
,
T.
,
2004
, “
Vibration Reduction of a Rotating Machinery by Magnetic Damper With Rotating Circular Magnet (Nonoccurrence of an Unstable Vibration Caused by Magnetic Damping Force)
,”
Trans. Jpn. Soc. Mech. Eng.
,
70
(
696
), pp.
2195
2202
(in Japanese).10.1299/kikaic.70.2195
13.
Matsuoka
,
T.
, and
Ohmata
,
K.
,
2001
/2002, “
A Study of a Magnetic Damper Using Rare-Earth Magnets and a Pinned Displacement Magnifying Mechanism
,”
Int. J. Appl. Electromagn.
,
13
, pp.
263
270
.
14.
Zuo
,
L.
,
Chen
,
X.
, and
Nayfe
,
S.
,
2011
, “
Design and Analysis of a New Type of Electromagnetic Damper With Increased Energy Density
,”
ASME J. Vibr. Acoust.
,
133
, p.
041006
.10.1115/1.4003407
15.
Yamamoto
,
T.
, and
Ishida
,
Y.
,
2001
,
Linear and Nonlinear Rotordynamics
,
Wiley
,
New York
, pp.
8
12
.
16.
Takayama
,
Y.
,
Sueoka
,
A.
, and
Kondou
,
T.
,
2008
, “
Modeling of Moving-Conductor Type Eddy Current Damper
,”
J. Syst. Des. Dyn.
,
2
(
5
), pp.
1148
1159
.10.1299/jsdd.2.1148
17.
Nashif
,
A. D.
,
Jones
,
D. I. G.
, and
Henderson
,
J. P.
,
1985
,
Vibration Damping
,
Wiley
,
New York
, pp.
130
133
.
18.
Purcell
,
E. M.
,
1985
,
Electricity and Magnetism
(Berkeley Physics Course, Vol. 2)
2nd ed.
,
McGraw-Hill
,
New York
, pp.
423
428
.
You do not currently have access to this content.