Analytical and finite element models are developed for investigating the modal characteristics of a hyperelastic rubber latex membrane for micro air vehicle wings applications. A radially prestretched membrane specimen is attached to a thin, rigid circular ring and vibrated in vacuum and in air at atmospheric pressure. The natural frequencies of the membrane computed by analytical and finite element models are correlated well. The natural frequencies increase with mode and prestretch level of the membrane but decrease in air from those in vacuum due to the effect of added mass of air. The damping is low and has a very minimal effect on the frequencies but helps to reduce the amplitude of vibration. Aerodynamic pressure at different angles of attack and a freestream velocity is computed from the wind tunnel test data, and a finite element model is developed for investigating the effect of the aerodynamic pressure on the modal characteristics of the membrane. It is found that the effect of aerodynamic pressure on the natural frequencies of the membrane is not significant.

References

References
1.
Raney
,
D.
, and
Slominski
,
E.
,
2004
, “
Mechanization and Control Concepts for Biologically Inspired Micro Air Vehicles
,”
J. Aircr.
,
41
, pp.
1257
1265
.10.2514/1.5514
2.
Song
,
A.
, and
Breuer
,
K.
,
2007
, “
Dynamics of a Compliant Membrane as Related to Mammalian Flight
,”
Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, January 8–11,
AIAA
Paper No. 2007-665.10.2514/6.2007-665
3.
Wootton
,
R. J.
,
1993
, “
Leading Edge Section and Asymmetric Twisting in the Wings of Flying Butterflies (Insecta, Papilionoidea)
,”
J. Exp. Biol.
,
180
, pp.
105
117
.
4.
Wootton
,
R. J.
,
2003
, “
Reconstructing Insect Flight Performance From Fossil Evidence
,”
Acta Zool. Cracov.
,
46
, pp.
89
99
.
5.
Wootton
,
R. J.
,
1992
, “
Functional Morphology of Insect Wings
,”
Annu. Rev. Entomol.
,
37
, pp.
113
140
.10.1146/annurev.en.37.010192.000553
6.
Ennos
,
A. R.
, and
Wootton
,
R. J.
,
1989
Functional Wing Morphology and Aerodynamics of Panorpa Germanica (Insecta: Mecoptera)
,”
J. Exp. Biol.
,
143
, pp.
267
284
.
7.
Combes
,
S. A.
, and
Daniel
,
T. L.
,
2003
, “
Into Thin Air: Contributions of Aerodynamic and Inertial-Elastic Forces to Wing Bending in the Hawkmoth Manduca Sexta
,”
J. Exp. Biol.
,
206
, pp.
2999
3006
.10.1242/jeb.00502
8.
Daniel
,
T. L.
, and
Combes
,
S. A.
,
2002
, “
Flexible Wings and Fins: Bending by Inertial or Fluid-Dynamic Forces?
,”
Integr. Comp. Biol.
,
42
, pp.
1044
1049
.10.1093/icb/42.5.1044
9.
Lian
,
Y.
, and
Shyy
,
W.
,
2007
, “
Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil
,”
AIAA J.
,
45
, pp.
1501
1513
.10.2514/1.25812
10.
Ho
,
S.
,
Nassef
,
H.
,
Pornsinsirirakb
,
N.
,
Tai
,
Y.
, and
Ho
,
C.
,
2003
, “
Unsteady Aerodynamics and Flow Control for Flapping Wing Flyers
,”
Prog. Aerosp. Sci.
,
39
, pp.
635
681
.10.1016/j.paerosci.2003.04.001
11.
Chakravarty
,
U. K.
, and
Albertani
,
R.
,
2011
, “
Modal Analysis of a Flexible Membrane Wing of Micro Air Vehicles
,”
J. Aircr.
,
48
, pp.
1960
1967
.10.2514/1.C031393
12.
Sewall
,
J.
,
Miserentino
,
R.
, and
Pappa
,
R.
,
1983
, “
Vibration Studies of a Lightweight Three-Sided Membrane Suitable for Space Applications
,” NASA Technical Paper No. TP 2095.
13.
Gaspar
,
J.
,
Solter
,
M.
, and
Pappa
,
R.
,
2002
, “
Membrane Vibration Studies Using a Scanning Laser Vibrometer
,” NASA Technical Memorandum No. TM 211427.
14.
Jenkins
,
C.
, and
Korde
,
U.
,
2006
, “
Membrane Vibration Experiments: An Historical Review and Recent Results
,”
J. Sound Vib.
,
295
, pp.
602
613
.10.1016/j.jsv.2006.01.036
15.
Graves
,
S.
,
Bruner
,
A.
,
Edwards
,
J.
, and
Schuster
,
D.
,
2003
, “
Dynamic Deformation Measurements of an Aeroelastic Semispan Model
,”
J. Aircr.
,
40
, pp.
977
984
.10.2514/2.6883
16.
Stanford
,
B.
,
Sytsma
,
M.
,
Albertani
,
R.
,
Viieru
,
D.
,
Shyy
,
W.
, and
Ifju
,
P.
,
2007
, “
Static Aeroelastic Model Validation of Membrane Micro Air Vehicle Wings
,”
AIAA J.
,
45
(
12
), pp.
2828
2837
.10.2514/1.30003
17.
Albertani
,
R.
,
Stanford
,
B.
,
Hubner
,
J.
, and
Ifju
,
P.
,
2007
, “
Aerodynamic Coefficients and Deformation Measurements on Flexible Micro Air Vehicle Wings
,”
Exp. Mech.
,
47
, pp.
625
635
.10.1007/s11340-006-9025-5
18.
Ozdoganlar
,
O.
,
Hansche
,
B.
, and
Carne
,
T.
,
2005
, “
Experimental Modal Analysis for Microelectromechanical Systems
,”
Exp. Mech.
,
45
, pp.
498
506
.10.1007/BF02427903
19.
Farlow
,
S. J.
,
1993
,
Partial Differential Equations for Scientists and Engineers
,
Dover
,
New York
.
20.
Kreyszig
,
E.
,
1999
,
Advanced Engineering Mathematics
,
John Wiley & Sons
,
New York
.
21.
Gonçalves
,
P. B.
,
Soares
,
R. M.
, and
Pamplona
,
D.
,
2009
, “
Nonlinear Vibrations of a Radially Stretched Circular Hyperelastic Membrane
,”
J. Sound Vib.
,
327
, pp.
231
248
.10.1016/j.jsv.2009.06.023
22.
Zhu
,
J.
,
Cai
,
S.
, and
Suo
,
Z.
,
2010
, “
Resonant Behavior of a Membrane of a Dielectric Elastomer
,”
Int. J. Solids Struct.
,
47
(
24
), pp.
3254
3262
.10.1016/j.ijsolstr.2010.08.008
23.
Jenkins
,
C. H.
, and
Leonard
,
J. W.
,
1991
, “
Nonlinear Dynamic Response of Membranes: State of the Art
,”
ASME Appl. Mech. Rev.
,
44
, pp.
319
328
.10.1115/1.3119506
24.
Fox
,
J. W.
, and
Goulbourne
,
N. C.
,
2008
On the Dynamic Electromechanical Loading of Dielectric Elastomer Membranes
,”
J. Mech. Phys. Solids
,
56
, pp.
2669
2686
.10.1016/j.jmps.2008.03.007
25.
Mockensturm
,
E. M.
, and
Goulbourne
,
N.
,
2006
, “
Dynamic Response of Dielectric Elastomers
,”
Int. J. Non-Linear Mech.
,
41
, pp.
388
395
.10.1016/j.ijnonlinmec.2005.08.007
26.
Tuzel
, V
. H.
, and
Erbay
,
H. A.
,
2004
, “
The Dynamic Response of an Incompressible Non-Linearly Elastic Membrane Tube Subjected to a Dynamic Extension
,”
Int. J. Non-Linear Mech.
,
39
, pp.
515
537
.10.1016/S0020-7462(02)00220-2
27.
Jiang
,
L.
,
Haddow
,
J. B.
, and
Wegner
,
J. L.
,
1992
, “
The Dynamic Response of a Stretched Circular Hyperelastic Membrane Subjected to Normal Impact
,”
Wave Motion
,
16
, pp.
137
150
.10.1016/0165-2125(92)90038-4
28.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
29.
Rivlin
,
R. S.
,
1948
, “
Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory
,”
Philos. Trans. R. Soc. London
, Ser. A,
241
(
835
), pp.
379
397
.10.1098/rsta.1948.0024
30.
Rivlin
,
R. S.
,
1953
, “
The Solution of Problems in Second-Order Elasticity
,”
J. Ration. Mech. Anal.
,
2
, pp.
53
81
.
31.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformations of Isotropic Materials. VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London, Ser. A
,
243
, pp.
251
288
.10.1098/rsta.1951.0004
32.
Treloar
,
L. R. G.
,
1944
, “
Strains in an Inflated Rubber Sheet and the Mechanism of Bursting
,”
Trans. Inst. Rubber Ind.
,
19
, pp.
201
212
.
33.
Chakravarty
,
U. K.
, and
Albertani
,
R.
,
2011
, “
Energy Absorption Behavior of a Hyperelastic Membrane for Micro Air Vehicle Wings: Experimental and Finite Element Approaches
,”
Int. J. Micro Air Veh.
,
3
(
1
), pp.
13
23
.10.1260/1756-8293.3.1.13
34.
Treloar
,
L. R. G.
,
1975
,
Rubber Elasticity
,
Oxford University Press
,
London
.
35.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Incompressible Rubber-Like Solids
,”
Proc. R. Soc. London, Ser. A
,
326
, pp.
565
584
.10.1098/rspa.1972.0026
36.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformation
,
Ellis-Horwood
,
Chichester, UK
.
37.
Gent
,
A. N.
,
1992
,
Engineering With Rubber
,
Oxford University Press
,
New York
.
38.
Drodzdov
,
A. D.
,
2007
, “
Constitutive Equations in Finite Elasticity of Rubbers
,”
Int. J. Solids Struct.
,
44
, pp.
272
297
.10.1016/j.ijsolstr.2006.04.022
39.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behaviour of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
, pp.
389
412
.10.1016/0022-5096(93)90013-6
40.
Boyce
,
M. C.
, and
Arruda
,
E. M.
,
2000
, “
Constitutive Models for Rubber Elasticity: A Review
,”
Rubber Chem. Technol.
,
73
, pp.
504
523
.10.5254/1.3547602
41.
Yang
,
W. H.
, and
Lu
,
C. H.
,
1973
, “
General Deformations of Neo-Hookean Membrane
,”
ASME J. Appl. Mech.
,
40
, pp.
1
12
.10.1115/1.3422925
42.
Wong
,
F. S.
, and
Shield
,
R. T.
,
1969
, “
Large Plane Deformations of Thin Elastic Sheets of Neo-Hookean Material
,”
J. Appl. Math. Phys. (ZAMP)
,
20
, pp.
176
199
.10.1007/BF01595559
43.
Yeoh
,
O. H.
,
1993
, “
Some Forms of the Strain Energy Function for Rubber
,”
Rubber Chem. Technol.
,
66
, pp.
754
771
.10.5254/1.3538343
44.
Sasso
,
M.
,
Palmieri
,
G.
,
Chiappini
,
G.
, and
Amodio
,
D.
,
2008
, “
Characterization of Hyperelastic Rubber-Like Materials by Biaxial and Uniaxial Stretching Tests Based on Optical Methods
,”
Polymer Testing
,
27
, pp.
995
1004
.10.1016/j.polymertesting.2008.09.001
45.
Azuma
,
A.
,
2006
,
The Biokinetics of Flying and Swimming
,
2nd ed.
,
American Institute of Aeronautics & Astronautics, Inc.
,
Reston, VA
.
46.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
,
1989
,
Concepts and Applications of Finite Element Analysis
,
3rd ed.
,
John Wiley & Sons, Inc.
,
New York
.
47.
SIMULIA
,
2009
, “
Abaqus 6.9® (Finite Element Analysis Software)
,” Rising Sun Mills, Providence, RI.
You do not currently have access to this content.