We develop an analytical formulation describing propagating flexural waves in periodically simply supported nanoribbons by means of Eringen's nonlocal elasticity. The nonlocal length scale is identified via atomistic finite element (FE) models of graphene nanoribbons with Floquet's boundary conditions. The analytical model is calibrated through the atomistic finite element approach. This is done by matching the nondimensional frequencies predicted by the analytical nonlocal model and those obtained by the atomistic FE simulations. We show that a nanoribbon with periodically supported boundary conditions does exhibit artificial pass-stop band characteristics. Moreover, the nonlocal elasticity solution proposed in this paper captures the dispersive behavior of nanoribbons when an increasing number of flexural modes are considered.

References

References
1.
Eringen
,
A. C.
,
1983
, “
On Differential-Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.10.1063/1.332803
2.
Li
,
C.
,
Lim
,
C. W.
,
Yu
,
J. L.
, and
Zeng
,
Q. C.
,
2011
, “
Analytical Solutions for Vibration of Simply Supported Nonlocal Nanobeams With an Axial Force
,”
Int. J. Struct. Stab. Dyn.
,
11
(
2
), pp.
257
271
.10.1142/S0219455411004087
3.
Pin Lu
H.
,
Lee
,
P.
,
Lu
,
C.
, and
Zhang
,
P. Q.
,
2007
, “
Application of Nonlocal Beam Models for Carbon Nanotubes
,”
Int. J. Solid. Struct.
,
44
(
16
), pp.
5289
5300
.10.1016/j.ijsolstr.2006.12.034
4.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
,
2010
, “
Nonlocal Scale Effects on Ultrasonic Wave Characteristics Nanorods
,”
Physica E
,
42
(
5
), pp.
1601
1604
.10.1016/j.physe.2010.01.002
5.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
,
2011
, “
Nonlocal Wave Propagation in Rotating Nanotube
,”
Result. Phys.
,
1
(
1
), pp.
17
25
.10.1016/j.rinp.2011.06.002
6.
Wang
,
Q.
,
2005
, “
Wave Propagation in Carbon Nanotubes via Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
,
98
(
12
), p.
124301
.10.1063/1.2141648
7.
Wang
,
L.
, and
Hu
,
H.
,
2005
, “
Flexural Wave Propagation in Single-Walled Carbon Nanotubes
,”
Phys Rev B
,
71
, p.
195412
.10.1103/PhysRevB.71.195412
8.
Pradhan
,
S. C.
,
2009
, “
Buckling of Single Layer Graphene Sheet Based on Nonlocal Elasticity and Higher Order Shear Deformation Theory
,”
Phys. Lett. A.
,
373
(
45
), pp.
4182
4188
.10.1016/j.physleta.2009.09.021
9.
Samaei
,
A. T.
,
Abbasion
,
S.
, and
Mirsayar
,
M. M.
,
2011
, “
Buckling Analysis of a Single-Layer Graphene Sheet Embedded in an Elastic Medium Based on Nonlocal Mindlin Plate Theory
,”
Mech. Res. Commun.
,
38
(
7
), pp.
481
485
.10.1016/j.mechrescom.2011.06.003
10.
Arash
,
B.
,
Wang
,
Q.
, and
Liew
,
K. M.
,
2012
, “
Wave Propagation in Graphene Sheets With Nonlocal Elastic Theory via Finite Element Formulation
,”
Comput. Meth. Appl. M.
,
223–224
, pp.
1
9
.10.1016/j.cma.2012.02.002
11.
Narendar
,
S.
,
Roy Mahapatra
,
D.
, and
Gopalakrishnan
,
S.
,
2010
, “
Investigation of the Effect of Nonlocal Scale on Ultrasonic Wave Dispersion Characteristics of a Monolayer Graphene
,”
Comput. Mater. Sci.
,
49
(
4
), pp.
734
742
.10.1016/j.commatsci.2010.06.016
12.
Kim
,
K. S.
,
Zhao
,
Y.
,
Jang
,
H.
,
Lee
,
S. Y.
,
Kim
,
J. M.
,
Kim
,
K. S.
,
Ahn
,
J.-H.
,
Kim
,
P.
,
Choi
,
J.-Y.
, and
Hong
,
B. H.
,
2009
, “
Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes
,”
Nature
,
457
(
7230
), pp.
706
710
.10.1038/nature07719
13.
Zhang
,
Y. B.
,
Tan
,
Y. W.
,
Stormer
,
H. L.
, and
Kim
,
P.
,
2005
, “
Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene
,”
Nature
,
438
(
7065
), pp.
201
204
.10.1038/nature04235
14.
Sakhaee-Pour
,
A.
,
Ahmadian
,
M. T.
, and
Vafai
,
A.
,
2008
, “
Potential Application of Single-Layered Graphene Sheet as Strain Sensor
,”
Solid State Comm.
,
147
(
7–8
), pp.
336
340
.10.1016/j.ssc.2008.04.016
15.
Scarpa
,
F.
,
Chowdhury
,
R.
,
Kam
,
K.
,
Adhikari
,
S.
, and
Ruzzene
,
M.
,
2011
, “
Dynamics of Mechanical Waves in Periodic Graphene Nanoribbon Assemblies
,”
Nanosc. Res. Lett.
,
6
, pp.
430
439
.10.1186/1556-276X-6-430
16.
Lin
,
Y.-M.
,
Dimitrakopoulos
,
C.
,
Jenkins
,
K. A.
,
Farmer
,
D. B.
,
Chiu
,
H.-Y.
,
Grill
,
A.
, and
Avouris
,
P. H.
,
2010
, “
100-GHz Transistors From Wafer-Scale Epitaxial Graphene
,”
Science
,
327
(
5966
), p.
662
.10.1126/science.1184289
17.
Mead
,
D. J.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
.10.1016/S0022-460X(70)80062-1
18.
Mead
,
D. J.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton 1964–1995
,”
J. Sound Vib.
,
190
(
3
), p.
495
10.1006/jsvi.1996.0076
19.
Ruzzene
,
M.
, and
Baz
,
A.
,
2000
, “
Attenuation and Localization of Wave Propagation in Periodic Rods Using Shape Memory Inserts
,”
Smart Mater. Struct.
,
9
, p.
805
.10.1088/0964-1726/9/6/310
20.
Nakada
,
K.
,
Fujita
,
M.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
1996
, “
Edge State in Graphene Nanoribbons: Nanometer Size Effect and Edge Shape Dependence
,”
Phys. Rev. B
,
54
(
24
), p.
17954
.10.1103/PhysRevB.54.17954
21.
Wen
,
J. G.
,
Lao
,
J. Y.
,
Wang
,
D. Z.
,
Kyaw
,
T. M.
,
Foo
,
Y. L.
, and
Ren
,
Z. F.
,
2003
, “
Self-Assembly of Semiconducting Oxide Nanowires, Nanorods, and Nanoribbons
,”
Chem. Phys. Lett.
,
372
, pp.
717
722
.10.1016/S0009-2614(03)00485-8
22.
Barone
,
V.
,
Hod
,
O.
, and
Scuseria
,
G. V.
,
2006
, “
Electronic Structure and Stability of Semiconducting Graphene Nanoribbons
,”
Nano. Lett.
,
6
(
12
), p.
2748
.10.1021/nl0617033
23.
Han
,
M. Y.
,
Özyilmaz
,
B.
,
Zhang
,
Y.
, and
Kim
,
P.
,
2007
, “
Energy Band-Gap Engineering of Graphene Nanoribbons
,”
Phys. Rev. Lett.
,
98
(
20
), p.
206805
.10.1103/PhysRevLett.98.206805
24.
Hod
,
O.
, and
Scuseria
,
G. E.
,
2009
, “
Electromechanical Properties of Suspended Graphene Nanoribbons
,”
Nano Lett.
,
9
(
7
), pp.
2619
2622
.10.1021/nl900913c
25.
Law
,
M.
,
Sirbuly
,
D. J.
,
Johnson
,
J. C.
,
Goldberger
,
J.
,
Saykally
,
R. J.
, and
Yang
,
P.
,
2004
, “
Nanoribbon Waveguides for Subwavelength Photonics Integration
,”
Science
,
305
(
5688
), p.
269
.10.1126/science.1100999
26.
Yosevich
,
Y. A.
, and
Savin
,
A. V.
,
2009
, “
Reduction of Phonon Thermal Conductivity in Nanowires and Nanoribbons With Dynamically Rough Surfaces and Edges
,”
Eur. Phys. Lett.
,
88
, p.
14002
.10.1209/0295-5075/88/14002
27.
Narendar
,
S.
, and
Gopalakrishnan
,
S.
,
2009
, “
Nonlocal Scale Effects on Wave Propagation in Multi-Walled Carbon Nanotubes
,”
Comput. Mater. Sci.
,
47
(
2
), pp.
526
538
.10.1016/j.commatsci.2009.09.021
28.
Scarpa
,
F.
,
Adhikari
,
S.
, and
Phani
,
A. S.
,
2009
, “
Effective Elastic Mechanical Properties of Single Layer Graphene Sheets
,”
Nanotechnology
,
20
, p.
065709
.10.1088/0957-4484/20/6/065709
29.
Scarpa
,
F.
,
Adhikari
,
S.
,
Gil
,
A. J.
, and
Remillat
,
C.
,
2010
, “
The Bending of Single Layer Graphene Sheets: Lattice Versus Continuum Approach
,”
Nanotechnology
,
21
(
12
), p.
125702
.10.1088/0957-4484/21/12/125702
30.
Chandra
,
Y.
,
Chowdhury
,
R.
,
Scarpa
,
F.
, and
Adhikaricor
,
S.
,
2011
, “
Vibrational Characteristics of Bilayer Graphene Sheets
,”
Thin Solid Films
519
(
18
), pp.
6026
6032
.10.1016/j.tsf.2011.04.012
31.
Scarpa
,
F.
,
Adhikari
,
S.
, and
Chowdhury
,
R.
,
2010
, “
The Transverse Elasticity of Bilayer Graphene
,”
Phys. Lett. A
,
374
, pp.
2053
2057
.10.1016/j.physleta.2010.02.063
32.
Scarpa
,
F.
,
Chowdhury
,
R.
, and
Adhikari
,
S.
,
2011
, “
Thickness and In-Plane Elasticity of Graphane
,”
Phys. Lett. A
,
375
(
20
), pp.
2071
2074
.10.1016/j.physleta.2011.03.050
33.
Liu
,
X.
,
Metcalf
,
T. H.
,
Robinson
,
J. T.
,
Houston
,
B. H.
, and
Scarpa
,
F.
,
2012
, “
Shear Modulus of Monolayer Graphene Prepared by Chemical Vapor Deposition
,”
Nano Lett.
,
12
(
2
), pp.
1013
1017
.10.1021/nl204196v
34.
Mead
,
D. J.
,
1986
, “
A New Method of Analyzing Wave Propagation in Periodic Structures; Applications to Periodic Timoshenko Beams and Stiffened Plates
,”
J. Sound Vib.
,
104
(
1
), pp.
9
27
.10.1016/S0022-460X(86)80128-6
35.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
,
2006
, “
Thickness of Graphene and Single Wall Carbon Nanotubes
,”
Phys Rev B
,
74
, p.
245413
.10.1103/PhysRevB.74.245413
36.
Xin
,
Z.
,
Jianjun
,
Z.
, and
Zhong-can
,
O.-Y.
,
2000
, “
Strain Energy and Young's Modulus of Single-Wall Carbon Nanotubes Calculated From Electronic Energy-Band Theory
,”
Phys. Rev. B
,
62
, pp.
13692
13696
.10.1103/PhysRevB.62.13692
37.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
,
2006
, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
74
, p.
245413
.10.1103/PhysRevB.74.245413
38.
Przemienicki
,
J. S.
,
1968
,
Theory of Matrix Structural Analysis
,
McGraw-Hill
,
New York
.
39.
Tee
,
K. F.
,
Spadoni
,
A.
,
Scarpa
,
F.
, and
Ruzzene
,
M.
,
2010
, “
Wave Propagation in Auxetic Tetrachiral Honeycombs
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031007
.10.1115/1.4000785
40.
Brillouin
,
L.
1953
,
Wave Propagation in Periodic Structures
,
Dover Phoenix Editions, New York
.
41.
Berdichevsky
,
V. L.
,
2009
, “
Theory of Elastic Plates and Shells
,”
Variational Principles of Continuum Mechanics II: Applications, Interaction of Mechanics and Mathematics
,
Springer, Berlin
.
42.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
,
1996
, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
, pp.
2511
2514
.10.1103/PhysRevLett.76.2511
43.
Chang
,
T.
, and
Gao
,
H.
,
2003
, “
Size-Dependent Elastic Properties of a Single Walled Carbon Nanotube via a Molecular Mechanics Model
,”
J. Mech. Phys. Solids
,
51
, p.
1059
.10.1016/S0022-5096(03)00006-1
44.
Tu
,
Z.
, and
Ou-Yang
,
Z.
,
2002
, “
Single-Walled and Multiwalled Carbon Nanotubes Viewed as Elastic Tubes With the Effective Young's Moduli Dependent on Layer Number
,”
Phys. Rev. B
,
65
, p.
233407
.10.1103/PhysRevB.65.233407
45.
Blakslee
,
O. L.
,
Proctor
,
D. G.
,
Seldin
,
E. J.
,
Spence
,
G. B.
, and
Weng
,
T.
,
1970
, “
Elastic Constants of Compression-Annealed Pyrolytic Graphite
,”
J. Appl. Phys.
,
41
(
8
), pp.
3373
3382
.10.1063/1.1659428
46.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
47.
Hu
,
Y.-G.
,
Liew
,
K. M.
,
Wang
,
Q.
,
He
,
X. Q.
, and
Yakobson
,
B. I.
,
2008
, “
Nonlocal Shell Model for Elastic Wave Propagation in Single- and Double-Walled Carbon Nanotubes
,”
J. Mech. Phys. Solid.
,
56
(
12
), pp.
3475
3485
.10.1016/j.jmps.2008.08.010
You do not currently have access to this content.