Second-order perturbation theory based on multiple time scale analysis is used to illuminate three-phonon scattering processes in the one-dimensional anharmonic monoatomic crystal. Molecular dynamics simulation techniques in conjunction with spectral energy density analyses are used to quantify phonon mode lifetime in (1) the monoatomic crystal and (2) a series of superlattice configurations. It is found that the lifetime of vibrational modes in the monoatomic crystal is inherently long, because the conditions for conservation of wave vector and frequency are pathologically difficult to satisfy. Superlattice configurations, however, offer band-folding effects, whereby the availability of phonon decay channels decreases the lifetime of the vibrational modes supported by the medium.

References

References
1.
Wallace
,
D. C.
,
1972
,
Thermodynamics of Crystals
,
3rd ed.
,
Wiley
,
New York
, pp.
128
.
2.
Wallace
,
D. C.
,
1966
, “
Renormalization and Statistical Mechanics in Many-Particle Systems. I. Hamiltonian Perturbation Method
,”
Phys. Rev.
,
152
, pp.
247–260
.10.1103/PhysRev.152.247
3.
Maradudin
,
A. A.
, and
Fein
,
A. E.
,
1962
, “
Scattering of Neutrons by an Anharmonic Crystal
,”
Phys. Rev.
,
128
, pp.
2589–2608
.10.1103/PhysRev.128.2589
4.
Kokkedee
,
J. J.
,
1962
, “
Anharmonic Effects in Coherent Scattering of Neutrons by Crystals—A Formal Treatment of Shift and Width of Peaks in Scattering Spectrum
,”
Physica
,
28
, pp.
374
–408.10.1016/0031-8914(62)90018-6
5.
Cowley
,
R. A.
,
1963
, “
The Lattice Dynamics of an Anharmonic Crystal
,”
Adv. Phys.
,
12
, pp.
421
–480.10.1080/00018736300101333
6.
Khoo
, I
. C.
, and
Wang
,
Y. K.
,
1976
, “
Multiple Time Scale Analysis of an Anharmonic Crystal
,”
J. Math. Phys.
,
17
(
2
), pp.
222
–227.10.1063/1.522884
7.
Krylov
,
N. M.
, and
Bogoliubov
,
N. N.
,
1947
,
Introduction to Nonlinear Mechanics
,
Princeton University
,
Princeton, NJ
, p.
102
.
8.
Hyldgaard
,
P.
, and
Mahan
,
G. D.
,
1997
, “
Phonon Superlattice Transport
,”
Phys. Rev. B
,
56
(
17
), pp.
10754
–10757.10.1103/PhysRevB.56.10754
9.
Chen
,
G.
,
Tien
,
C. L.
,
Wu
,
X.
, and
Smith
,
J. S.
,
1994
, “
Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures
,”
ASME J. Heat Transfer
,
116
, pp.
325
–331.10.1115/1.2911404
10.
Capinski
,
W. S.
, and
Maris
,
H. J.
,
1996
, “
Thermal Conductivity of GaAs/AlAs Superlattices
,”
Physica B
,
219–220
, pp.
699
–701.10.1016/0921-4526(95)00858-6
11.
Landry
,
E. S.
,
Hussein
,
M. I.
, and
McGaughey
,
A. J. H.
,
2008
, “
Complex Superlattice Unit Cell Designs for Reduced Thermal Conductivity
,
Phys. Rev. B
,
77
, p.
184302
.10.1103/PhysRevB.77.184302
12.
McGaughey
,
A. J. H.
,
Hussein
,
M. I.
,
Landry
,
E. S.
,
Kaviany
,
M.
, and
Hulbert
,
G. M.
,
2006
, “
Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal
,”
Phys. Rev. B
,
74
, p.
104304
.10.1103/PhysRevB.74.104304
13.
Gorishnyy
,
T.
,
Ullal
,
C. K.
,
Maldovan
,
M.
,
Fytas
,
G.
, and
Thomas
,
E. L.
,
2005
, “
Hypersonic Phononic Crystals
,”
Phys. Rev. Lett.
,
94
, p.
115501
.10.1103/PhysRevLett.94.115501
14.
Gillet
,
J.-N.
,
Chalopin
,
Y.
, and
Volz
,
S.
,
2009
, “
Atomic-Scale Three-Dimensional Phononic Crystals With a Very Low Thermal Conductivity to Design Crystalline Thermoelectric Devices
,”
ASME J. Heat Transfer
,
131
, p.
043206
.10.1115/1.3072927
15.
Davis
,
B. L.
, and
Hussein
,
M. I.
,
2011
, “
Thermal Characterization of Nanoscale Phononic Crystals Using Supercell Lattice Dynamics
,”
AIP Adv.
,
1
, p.
041701
.10.1063/1.3675798
16.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,”
ASME J. Vibr. Acoust.
,
132
, p.
031001
.10.1115/1.4000775
17.
Manktelow
,
K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2011
, “
Multiple Scales Analysis of Wave-Wave Interactions in a Cubically Nonlinear Monoatomic Chain
,”
Nonlinear Dyn.
,
63
, pp.
193
–203.10.1007/s11071-010-9796-1
18.
Haile
,
J. M.
,
1992
,
Molecular Dynamics Simulation: Elementary Methods
,
Wiley-Interscience
,
New York
, pp.
23
.
19.
Thomas
,
J. A.
,
Turney
,
J. E.
,
Iutzi
,
R. M.
,
Amon
,
C. H.
, and
McGaughey
,
A. J. H.
,
2010
, “
Predicting Phonon Dispersion Relations and Lifetimes From the Spectral Energy Density
,”
Phys. Rev. B
,
81
, p.
081411
.10.1103/PhysRevB.81.081411
20.
Berman
,
G. P.
, and
Izraileva
,
F. M.
,
2005
, “
The Fermi-Pasta-Ulam Problem: Fifty Years of Progress
,”
Chaos
,
15
, p.
015104
.10.1063/1.1855036
21.
Garg
,
J.
,
Bonini
,
N.
, and
Marzani
,
N.
,
2011
, “
High Thermal Conductivity in Short-Period Superlattice
,”
Nano Lett.
,
11
, pp.
5135
–5141.10.1021/nl202186y
22.
Ziman
,
J. M.
,
1960
,
Electrons and Phonons
,
Oxford University
,
London
, pp.
103
.
23.
Lee
,
S. M.
,
Cahill
,
D. G.
, and
Vekatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si-Ge Superlattices
,”
Appl. Phys. Lett.
,
70
, pp.
2957
–2959.10.1063/1.118755
24.
Capinski
,
W. S.
,
Maris
,
H. J.
,
Ruf
,
T.
,
Cardona
,
M.
,
Ploog
,
K.
, and
Latzer
,
D. S.
,
1999
, “
Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picoseconds Optical Pump-and-Probe Technique
,”
Phys. Rev. B
,
59
, pp.
8105
–8113.10.1103/PhysRevB.59.8105
25.
Wang
,
Y.
,
Xu
,
X.
, and
Venkatasubramanian
,
R.
,
2008
, “
Reduction in Coherent Phonon Lifetime in Bi2Te3/Sb2Te3 Superlattices
,”
Appl. Phys. Lett.
,
93
, p.
113114
.10.1063/1.2987518
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.