Bloch waves in viscously damped periodic material and structural systems are analyzed using a perturbation method originally developed by Rayleigh for vibration analysis of finite structures. The extended method, called the Bloch–Rayleigh perturbation method here, utilizes the Bloch waves of an undamped unit cell as basis functions to provide approximate closed-form expressions for the complex eigenvalues and eigenvectors of the damped unit cell. In doing so, we circumvent the solution of a quadratic Bloch eigenvalue problem and subsequent computationally intensive transformation to first order/state-space form. Dispersion curves of a one-dimensional damped spring-mass chain and a two-dimensional phononic crystal with square inclusions are calculated using the state-space method and the proposed method. They are compared and found to be in excellent quantitative agreement for both proportional and nonproportional viscous damping models. The perturbation method is able to capture anomalous dispersion phenomena—branch overtaking, branch cut-on/cut-off, and frequency contour transformation—in parametric ranges where state-space formulations encounter numerical issues. Generalization to other linear nonviscous damping models is permissible.

References

References
1.
Bloch
,
F.
,
1928
, “
Über die Quantenmechanik der Elektronen in Kristallgittern
,”
Z. Phys.
,
52
, pp.
555
600
.10.1007/BF01339455
2.
Brillouin
,
L.
,
1953
,
Wave Propagation in Periodic Structures
,
2nd
ed.,
Dover
,
Mineola, NY
.
3.
Kittel
,
C.
,
1962
,
Elementary Solid State Physics: A Short Course
,
1st
ed.,
John Wiley and Sons
,
New York
.
4.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc., Ser. A
,
466
(
2121
), pp.
2495
2516
.10.1098/rspa.2010.0215
5.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.10.1126/science.1211649
6.
Mead
,
D.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton 1964–1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.10.1006/jsvi.1996.0076
7.
Langley
,
R.
,
Bardell
,
N.
, and
Ruivo
,
H. M.
,
1997
, “
The Response of Two-Dimensional Periodic Structures to Harmonic Point Loading: A Theoretical and Experimental Study of a Beam Grillage
,”
J. Sound Vib.
,
207
(
4
), pp.
521
535
.10.1006/jsvi.1997.1154
8.
Tan
,
T.
,
Douglas
,
G.
,
Bond
,
T.
, and
Phani
,
A. S.
,
2011
, “
Compliance and Longitudinal Strain of Cardiovascular Stents: Influence of Cell Geometry
,”
ASME J. Med. Devices
,
5
(
4
), p.
041002
.10.1115/1.4005226
9.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N. A.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
1995
2005
.10.1121/1.2179748
10.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
, pp.
2022
2025
.10.1103/PhysRevLett.71.2022
11.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
, pp.
141
143
.10.1016/0038-1098(93)90888-T
12.
Khelif
,
A.
,
Djafari-Rouhani
,
B.
,
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Lambin
,
P.
, and
Dobrzynski
,
L.
,
2002
, “
Transmittivity Through Straight and Stublike Waveguides in a Two-Dimensional Phononic Crystal
,”
Phys. Rev. B
,
65
, p.
174308
.10.1103/PhysRevB.65.174308
13.
Wu
,
T. T.
,
Huang
,
Z. G.
, and
Lin
,
S.
,
2004
, “
Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystal Consisting of Materials With General Anisotropy
,”
Phys. Rev. B
,
69
, p.
094301
.10.1103/PhysRevB.69.094301
14.
Yang
,
S.
,
Page
,
J. H.
,
Liu
,
Z.
,
Cowan
,
M. L.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2004
, “
Focusing of Sound in a 3-D Phononic Crystal
,”
Phys. Rev. Lett.
,
93
, p.
024301
.10.1103/PhysRevLett.93.024301
15.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1-D Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
, pp.
779
806
.10.1016/j.jsv.2005.02.030
16.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2007
, “
Dispersive Elastodynamics of 1-D Banded Materials and Structures: Design
,”
J. Sound Vib.
,
307
, pp.
865
893
.10.1016/j.jsv.2007.07.021
17.
Laude
,
V.
,
Achaoui
,
Y.
,
Benchabane
,
S.
, and
Khelif
,
A.
,
2009
, “
Evanescent Bloch Waves and the Complex Band Structure of Phononic Crystals
,”
Phys. Rev. B
,
80
, p.
092301
.10.1103/PhysRevB.80.092301
18.
Olsson
,
R. H.
III
, and
El-Kady
,
I.
,
2009
, “
Microfabricated Phononic Crystal Devices and Applications
,”
Meas. Sci. Technol.
,
20
, p.
012002
.10.1088/0957-0233/20/1/012002
19.
Davis
,
B. L.
, and
Hussein
,
M. I.
,
2011
, “
Thermal Characterization of Nanoscale Phononic Crystals Using Supercell Lattice Dynamics
,”
AIP Adv.
,
1
, p.
041701
.10.1063/1.3675798
20.
Swinteck
,
N.
,
Robillard
,
J.-F.
,
Bringuier
,
S.
,
Bucay
,
J.
,
Muralidaran
,
K.
,
Vasseur
,
J.
,
Runge
,
K.
and
Deymier
,
P. A.
,
2011
, “
Phase-Controlling Phononic Crystal
,”
Phys. Rev. Lett.
,
98
, p.
103508
.10.1063/1.3559599
21.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Crystals
,”
Science
,
289
(
5485
), pp.
1734
1736
.10.1126/science.289.5485.1734
22.
Goffaux
,
C.
,
Sánchez-Dehesa
,
J.
,
Yeyati
,
L.
,
Lambin
,
P.
,
Khelif
,
A.
,
Vasseur
,
J. O.
, and
Djafari-Rouhani
,
B.
,
2002
, “
Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials
,”
Phys. Rev. Lett.
,
88
, p.
225502
.10.1103/PhysRevLett.88.225502
23.
Wang
,
G.
,
Wen
,
X.
,
Wen
,
J.
,
Shao
,
L.
, and
Liu
,
Y.
,
2004
, “
Two-Dimensional Locally Resonant Phononic Crystals With Binary Structures
,”
Phys. Rev. Lett.
,
93
, p.
154302
.10.1103/PhysRevLett.93.154302
24.
Guenneau
,
S.
,
Movchan
,
A.
,
Pètursson
,
G.
, and
Ramakrishna
,
S. A.
,
2007
, “
Acoustic Metamaterials for Sound Focusing and Confinement
,”
New J. Phys.
,
9
(
11
), p.
399
.10.1088/1367-2630/9/11/399
25.
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Larabi
,
H.
,
Vasseur
,
J. O.
, and
Hladky-Hennion
,
A. C.
,
2008
, “
Low-Frequency Gaps in a Phononic Crystal Constituted of Cylindrical Dots Deposited on a Thin Homogeneous Plate
,”
Phys. Rev. B
,
78
, p.
104105
.10.1103/PhysRevB.78.104105
26.
Wu
,
T. T.
,
Huang
,
Z. G.
,
Tsai
,
T. C.
, and
Wu
,
T. C.
,
2008
, “
Evidence of Complete Band Gap and Resonances in a Plate With Periodic Stubbed Surface
,”
Appl. Phys. Lett.
,
93
, p.
111902
.10.1063/1.2970992
27.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2008
, “
Acoustic Cloaking in Two Dimensions: A Feasible Approach
,”
New J. Phys.
,
10
, p.
063015
.10.1088/1367-2630/10/6/063015
28.
Banerjee
,
B.
,
2011
,
An Introduction to Metamaterials and Waves in Composites
,
Taylor & Francis
,
Boca Raton, FL
.
29.
Ruzzene
,
M.
,
Scarpa
,
F.
, and
Soranna
,
F.
,
2003
, “
Wave Beaming Effects in Two-Dimensional Cellular Structures
,”
Smart Mater. Struct.
,
12
, pp.
363
372
.10.1088/0964-1726/12/3/307
30.
Hussein
,
M. I.
, and
El-Kady
,
I.
,
2011
, “
Preface to Special Topic: Selected Articles From Phononics 2011: The First International Conference on Phononic Crystals, Metamaterials and Optomechanics, 29 May-2 June, 2011, Santa Fe, New Mexico, USA
,”
AIP Adv.
,
1
(
4
), p.
041301
.10.1063/1.3676188
31.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
,
Springer-Verlag
,
Berlin/Heidelberg
.
32.
Gavric
,
L.
,
1994
, “
Finite Element Computation of Dispersion Properties of Thin-Walled Waveguides
,”
J. Sound Vib.
,
173
(
1
), pp.
113
124
.10.1006/jsvi.1994.1221
33.
Gavric
,
L.
,
1995
, “
Computation of Propagative Waves in Free Rail Using a Finite Element Technique
,”
J. Sound Vib.
,
185
(
3
), pp.
531
543
.10.1006/jsvi.1995.0398
34.
Bartoli
,
I.
,
Marzani
,
A.
,
di Scalea
,
F. L.
, and
Viola
,
E.
,
2006
, “
Modeling Wave Propagation in Damped Waveguides of Arbitrary Cross-Section
,”
J. Sound Vib.
,
295
(
3–5
), pp.
685
707
.10.1016/j.jsv.2006.01.021
35.
Manconi
,
E.
, and
Mace
,
B. R.
,
2010
, “
Estimation of the Loss Factor of Viscoelastic Laminated Panels From Finite Element Analysis
,”
J. Sound Vib.
,
329
(
19
), pp.
3928
3939
.10.1016/j.jsv.2010.04.014
36.
Hussein
,
M. I.
,
2009
, “
Theory of Damped Bloch Waves in Elastic Media
,”
Phys. Rev. B
,
80
, p.
212301
.10.1103/PhysRevB.80.212301
37.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2010
, “
Band Structure of Phononic Crystals With General Damping
,”
J. Appl. Phys.
,
108
(
9
), p.
093506
.10.1063/1.3498806
38.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch's Method in Structures With Energy Dissipation
,”
ASME J. Vibr. Acoust.
,
133
(
5
), p.
051010
.10.1115/1.4003943
39.
Moiseyenko
,
R. P.
, and
Laude
,
V.
,
2011
, “
Material Loss Influence on the Complex Band Structure and Group Velocity in Phononic Crystals
,”
Phys. Rev. B
,
83
(
6
), p.
064301
.10.1103/PhysRevB.83.064301
40.
Collet
,
M.
,
Ouisse
,
M.
,
Ruzzene
,
M.
and
Ichchou
,
M.
,
2011
, “
Floquet-Bloch Decomposition for the Computation of Dispersion of Two-Dimensional Periodic, Damped Mechanical Systems
,”
Int. J. Solids Struct.
,
48
(
20
), pp.
2837
2848
.10.1016/j.ijsolstr.2011.06.002
41.
Rayleigh
,
J. W.
,
1894
(reprint 1945),
The Theory of Sound
, Vol.
1
Dover
,
New York
.
42.
Woodhouse
,
J.
,
1998
, “
Linear Damping Models for Structural Vibration
,”
J. Sound Vib.
,
215
(
3
), pp.
547
569
.10.1006/jsvi.1998.1709
43.
Phani
,
A. S.
,
2003
, “
On the Necessary and Sufficient Conditions for the Existence of Classical Normal Modes in Damped Linear Dynamic Systems
,”
J. Sound Vib.
,
264
(
3
), pp.
741
745
.10.1016/S0022-460X(02)01506-7
44.
Adhikari
,
S.
, and
Woodhouse
,
J.
,
2001
, “
Identification of Damping, Part 1: Viscous Damping
,”
J. Sound Vib.
,
243
(
1
), pp.
43
61
.10.1006/jsvi.2000.3391
45.
Phani
,
A. S.
, and
Woodhouse
,
J.
,
2007
, “
Viscous Damping Identification in Linear Vibration
,”
J. Sound Vib.
,
303
(
3–5
), pp.
475
500
.10.1016/j.jsv.2006.12.031
46.
Phani
,
A. S.
, and
Woodhouse
,
J.
,
2009
, “
Experimental Identification of Viscous Damping in Linear Vibration
,”
J. Sound Vib.
,
319
(
3–5
), pp.
832
849
.10.1016/j.jsv.2008.06.022
47.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1985
,
Matrix Analysis
,
Cambridge University Press
,
Cambridge, UK
.
48.
Caughey
,
T. K.
, and
O'Kelly
,
M. E. J.
,
1965
, “
Classical Normal Modes in Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
,
32
, pp.
583
588
.10.1115/1.3627262
49.
Newland
,
D. E.
,
2006
,
Mechanical Vibration Analysis and Computation
,
Dover
,
New York
.
50.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice and Application
,
2nd
ed.,
Research Studies, Baldock, Hertfordshire
,
England
.
51.
Mukherjee
,
S.
, and
Lee
,
E. H.
,
1975
, “
Dispersion Relations and Mode Shapes for Waves in Laminated Viscoelastic Composites by Finite Difference Methods
,”
Comput. Struct.
,
5
, pp.
279
285
.10.1016/0045-7949(75)90033-4
52.
Perkins
,
N. C.
, and
Mote
,
C. D.
, Jr.
,
1986
, “
Comment on Curve Veering in Eigenvalue Problems
,”
J. Sound Vib
,
106
(
3
), pp.
451
463
.10.1016/0022-460X(86)90191-4
53.
Mace
,
B. R.
, and
Manconi
,
E.
,
2012
, “
Wave Motion and Dispersion Phenomena: Veering, Locking and Strong Coupling Effects
,”
J. Acoust. Soc. Am.
,
131
(
2
), pp.
1015
1028
.10.1121/1.3672647
54.
Phani
,
A.
, and
Adhikari
,
S.
,
2008
, “
Rayleigh Quotient and Dissipative Systems
,”
ASME J. Appl. Mech.
,
75
, p.
061005
.10.1115/1.2910898
You do not currently have access to this content.