The paper presents a novel spectral approach, accompanied by an asymptotic model and numerical simulations for slender elastic systems such as long bridges or tall buildings. The focus is on asymptotic approximations of solutions by Bloch waves, which may propagate in a infinite periodic waveguide. Although the notion of passive mass dampers is conventional in the engineering literature, it is not obvious that an infinite waveguide problem is adequate for analysis of long but finite slender elastic systems. The formal mathematical treatment of a Bloch wave would reduce to a spectral analysis of equations of motion on an elementary cell of a periodic structure, with Bloch–Floquet quasi-periodicity conditions imposed on the boundary of the cell. Frequencies of some classes of standing waves can be estimated analytically. One of the applications discussed in the paper is the “dancing bridge” across the river Volga in Volgograd.

References

References
1.
Mail Foreign Service, 2010, “The Bridge That's Blowing in the Wind: Drivers ‘Seasick’ as Brand New Russian Bridge Bounces Up to Three Feet in Stormy Weather,” May 25, 2010, www.dailymail.co.uk/news/worldnews/article-1280919/Russian-bridge-bounces-feet-Volga-River.html
2.
iMechanica, 2010, “
Spectacular Torsional-Flexural Autovibrations of a Volga Bridge
,” gregk's blog, imechanica.org/node/8280
3.
Strogatz
,
S. H.
,
Abrams
,
D. M.
,
McRobie
,
A.
,
Eckhardt
,
B.
, and
Ott
,
E.
,
2005
, “
Theoretical Mechanics: Crowd Synchrony on the Millennium Bridge
,”
Nature
,
438
, pp.
43
44
.10.1038/438043a
4.
Sanderson
,
K.
,
2008
, “
Millennium Bridge Wobble Explained
,”
Nature
, December 1710.1038/news.2008.1311.
5.
McDonald
,
J. H. G.
,
2009
, “
Lateral Excitation of Bridges by Balancing Pedestrians
,”
Proc. R. Soc. A
,
465
, pp.
1055
1073
.10.1098/rspa.2008.0367
6.
Den Hartog
,
J. P.
,
1956
,
Mechanical Vibrations
,
4th ed.
,
McGraw-Hill
,
New York
.
7.
Luft
,
R. W.
,
1979
, “
Optimal Tuned Mass Dampers for Buildings
,”
ASCE J. Struct. Division
,
105
(
12
), pp.
2766
2772
, available at: http://cedb.asce.org/cgi/WWWdisplay.cgi?5281
8.
Warburton
,
G. B.
, and
Ayorinde
,
E. O.
,
1980
, “
Optimal Absorber Parameters for Simple Systems
,”
Earthq. Eng. Struct. D
,
8
(3), pp.
197
217
.10.1002/eqe.4290080302
9.
Warburton
,
G. B.
,
1982
, “
Optimal Absorber Parameters for Various Combinations of Response and Excitation Parameters
,”
Earthq. Eng. Struct. D
,
10
(3), pp.
381
401
.10.1002/eqe.4290100304
10.
Xu
,
K.
, and
Igusa
,
T.
,
1992
, “
Dynamic Characteristics of Multiple Substructures With Closely Spaced Frequencies
,”
Earthq. Eng. Struct. D
,
21
(12), pp.
1059
1070
.10.1002/eqe.4290211203
11.
Yamaguchi
,
H.
, and
Harnpornchai
,
N.
,
1993
, “
Fundamental Characteristics of Multiple Tuned Mass Dampers for Suppressing Harmonically Forced Oscillations
,”
Earthq. Eng. Struct. D
,
22
(1), pp.
51
62
.10.1002/eqe.4290220105
12.
Abe
,
M.
, and
Fujino
,
Y.
,
1994
, “
Dynamic Characterization of Multiple Tuned Mass Dampers and Some Design Formulas
,”
Earthq. Eng. Struct. D
,
23
(8), pp.
813
835
.10.1002/eqe.4290230802
13.
Jangid
,
R. S.
,
1995
, “
Dynamic Characteristic of Structures With Multiple Tuned Mass Dampers
,”
Struct. Eng. Mech.
,
3
(
5
), pp.
497
509
, available at: http://technopress.kaist.ac.kr/?page=container&journal=sem&volume=3&num=5#
14.
Weber
,
F.
, and
Maslanka
,
M.
,
2012
, “
Frequency and Damping Adaptation of a TMD With Controlled MR Damper
,”
Smart Mater. Struct.
,
21
(5), p.
055011
.10.1088/0964-1726/21/5/055011
15.
Movchan
,
A. B.
,
Nicorovici
,
N. A.
, and
McPhedran
,
R. C.
,
1997
, “
Green's Tensors and Lattice Sums for Electrostatics and Elastodynamics
,”
Proc. R. Soc. A
,
453
(
1958
), pp.
643
662
.10.1098/rspa.1997.0036
16.
Poulton
,
C. G.
,
Movchan
,
A. B.
,
McPhedran
,
R. C.
,
Nicorovici
,
N. A.
, and
Antipov
,
Y. A.
,
2000
, “
Eigenvalue Problems for Doubly Periodic Elastic Structures and Phononic Band Gaps
,”
Proc. R. Soc. A
,
456
(
2002
),
2543
2559
.10.1098/rspa.2000.0624
17.
Zalipaev
,
V. V.
,
Movchan
,
A. B.
,
Poulton
,
C. G.
, and
McPhedran
,
R. C.
,
2002
, “
Elastic Waves and Homogenization in Oblique Periodic Structures
,”
Proc. R. Soc. A
,
458
(
2026
), pp.
2327
2347
.10.1098/rspa.2001.0948
18.
Movchan
,
N. V.
,
Guenneau
,
S.
,
Movchan
,
A. B.
, and
McPhedran
,
R. C.
, “
Estimates for Localised Transverse Electric Modes in Multi-Structured Crystal Fibres
,”
Physica B
,
394
,
2
,
281
284
(
2007
).10.1016/j.physb.2006.12.052
19.
Movchan
,
A. B.
,
Movchan
,
N. V.
,
Guenneau
,
S.
, and
McPhedran
,
R. C.
,
2007
, “
Asymptotic Estimates for Localised Electromagnetic Modes in Doubly Periodic Structures With Defects
,”
Proc. R. Soc. A
,
463
(
2080
), pp.
1045
1067
.10.1098/rspa.2006.1800
20.
Platts
,
S. B.
,
Movchan
,
N. V.
,
McPhedran
,
R. C.
, and
Movchan
,
A. B.
,
2002
, “
Two-Dimensional Phononic Crystals and Scattering of Elastic Waves by an Array of Voids
,”
Proc. R. Soc. A
,
458
(
2024
), pp.
1887
1912
.10.1098/rspa.2002.0960
21.
Platts
,
S. B.
,
Movchan
,
N. V.
,
McPhedran
,
R. C.
, and
Movchan
,
A. B.
,
2003
, “
Transmission and Polarisation of Elastic Waves in Irregular Structures
,”
J. Eng. Mater. Technol.
,
125
(
1
), pp.
2
6
.10.1115/1.1525248
22.
Platts
,
S. B.
,
Movchan
,
N. V.
,
McPhedran
,
R. C.
, and
Movchan
,
A. B.
,
2003
, “
Band Gaps and Elastic Waves in Disordered Stacks: Normal Incidence
,”
Proc. R. Soc. A
,
459
(
2029
), pp.
221
240
.10.1098/rspa.2002.1041
23.
Movchan
,
A. B.
,
Movchan
,
N. V.
, and
McPhedran
,
R. C.
,
2007
, “
Bloch-Floquet Bending Waves in Perforated Thin Plates
,”
Proc. R. Soc. A
,
463
(
2086
), pp.
2505
2518
.10.1098/rspa.2007.1886
24.
McPhedran
,
R. C.
,
Movchan
,
A. B.
, and
Movchan
,
N. V.
,
2009
, “
Platonic Crystals: Bloch Bands, Neutrality and Defects
,”
Mech. Mat.
,
41
(
4
), pp.
356
363
.10.1016/j.mechmat.2009.01.005
25.
Movchan
,
N. V.
,
McPhedran
,
R. C.
,
Movchan
,
A. B.
, and
Poulton
,
C. G.
,
2009
, “
Wave Scattering by Platonic Grating Stacks
,”
Proc. R. Soc. A
,
465
(
2111
), pp.
3383
3400
.10.1098/rspa.2009.0301
26.
Jones
,
I. S.
,
Movchan
,
A. B.
, and
Gei
,
M.
,
2011
, “
Waves and Damage in Structured Solids With Multi-Scale Resonators
,”
Proc. R. Soc. A
,
467
, pp.
964
984
.10.1098/rspa.2010.0319
27.
Brun
,
M.
,
Guenneau
,
S.
,
Movchan
,
A. B.
, and
Bigoni
,
D.
,
2010
, “
Dynamics of Structural Interfaces: Filtering and Focussing Effects for Elastic Waves
,”
J. Mech. Phys. Solids
,
58
(
9
), pp.
1212
1224
.10.1016/j.jmps.2010.06.008
28.
Brun
,
M.
,
Movchan
,
A. B.
, and
Movchan
,
N. V.
,
2010
, “
Shear Polarisation of Elastic Waves by a Structured Interface
,”
Cont. Mech. Therm.
,
22
(
6–8
), pp.
663
677
.10.1007/s00161-010-0143-z
29.
Nicolet
,
A.
, and
Zolla
,
F.
,
2009
, “
Cloaking With Curved Spaces
,”
Science
,
323
(
5910
), pp.
46
47
.10.1126/science.1168456
30.
Brun
,
M.
,
Guenneau
,
S.
, and
Movchan
,
A. B.
,
2009
, “
Achieving Control of In-Plane Elastic Waves
,”
Appl. Phys. Lett.
,
94
(
6
), p.
061903
.10.1063/1.3068491
31.
Brun
,
M.
,
Giaccu
,
G. F.
,
Movchan
,
A. B.
, and
Movchan
,
N. V.
,
2012
, “
Asymptotics of Eigenfrequencies in the Dynamic Response of Elongated Multi-Structures
,”
Proc. R. Soc. A
,
468
, pp.
378
394
(
2012
).10.1098/rspa.2011.0415
32.
Ergin
,
T.
,
Stenger
,
N.
,
Brenner
,
P.
,
Pendry
,
J. B.
, and
Wegener
,
M.
,
2010
, “
Three-Dimensional Invisibility Cloak at Optical Wavelengths
,”
Science
,
328
(
5976
), pp.
337
339
.10.1126/science.1186351
33.
Kozlov
,
V.
,
Maz'ya
,
V.
, and
Movchan
,
A.
,
1999
,
Asymptotic Analysis of Fields in Multi-Structures
,
Oxford University Press
, Oxford, UK.
34.
Brun, M., 2011, “
Shake Rattle and Roll
,” blog, January 4, people.unica.it/brunmi/shake-rattle-and-roll/
35.
S. S.
Rao
,
1995
,
Mechanical Vibrations
, 3rd ed.,
Addison-Wesley Publishing Company, Reading, MA
.
36.
Dallard
,
P.
,
Fitzpatrick
,
A. J.
,
Flint
,
A.
,
Le Bourva
,
S.
,
Low
,
A.
,
Ridsdill Smith
,
R. M.
, and
Willford
,
M.
,
2001
, “
The London Millennium Footbridge
,”
Struct. Engineer
,
79
(22), pp.
17
33
, available at: http://www.bcps.org/offices/lis/researchcourse/images/structural_engineering.pdf
You do not currently have access to this content.