Phononic crystals are artificial materials made of a periodic distribution of solid scatterers embedded into a solid host medium with different physical properties. An interesting case of phononic crystals, known as sonic crystals (SCs), appears when the solid scatterers are periodically embedded in a fluid medium. In SCs only longitudinal modes are allowed to propagate and both the theoretical and the experimental studies of the properties of the system are simplified without loss of generality. The most celebrated property of these systems is perhaps the existence of spectral band gaps. However, the periodicity of the system can also affect to the spatial dispersion, making possible the control of the diffraction inside these structures. In this work we study the main features of the spatial dispersion in SCs from a novel point of view taking into account the evanescent properties of the system, i.e., studying the complex spatial dispersion relations. The evanescent behavior of the propagation of waves in the angular band gaps are theoretically and experimentally observed in this work. Both the numerical predictions and the experimental results show the presence of angular band gaps in good agreement with the complex spatial dispersion relation. The results shown in this work are independent of the spatial scale of the structure, and in principle the fundamental role of the evanescent waves could be also expected in micro- or nanoscale phononic crystals.

References

References
1.
Rayleigh
,
J.
,
1887
, “
Acoustical Observations
,”
Philos. Mag.
,
XXIV
, pp.
145
159
.
2.
Bloch
,
F.
,
1928
, “
Uber die Quantenmechanik der Electron in Kristallgittern
,”
Z. Phys.
,
52
, pp.
555
600
.
3.
Brillouin
,
L.
,
1953
,
Wave Propagation in Periodic Structures
,
2nd ed.
Dover
,
New York
.
4.
Yablonovitch
,
E.
,
1987
, “
Inhibited Spontaneous Emission in Solid-State Physics and Electronics
,”
Phys. Rev. Lett.
,
58
(20), pp.
2059
2062
.10.1103/PhysRevLett.58.2059
5.
John
,
S.
,
1987
, “
Strong Localization of Photons in Certain Disordered Dielectric Superlattices
,”
Phys. Rev. Lett.
,
58
(23), pp.
2486
2489
.10.1103/PhysRevLett.58.2486
6.
Ruffa
,
A.
,
1992
, “
Acoustic Wave Propagation Through Periodic Bubbly Liquids
,”
J. Acoust. Soc. Am.
,
91
(1), pp.
1
11
.10.1121/1.402755
7.
Sigalas
,
M.
, and
Economou
,
E.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
(2), pp.
377
382
.10.1016/0022-460X(92)90059-7
8.
Sigalas
,
M.
, and
Economou
,
E.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
(3), pp.
141
143
.10.1016/0038-1098(93)90888-T
9.
Kushwaha
,
M.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.10.1103/PhysRevLett.71.2022
10.
Kushwaha
,
M.
,
Halevi
,
P.
,
Martnez
,
G.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1994
, “
Theory of Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. B
49
(
4
), pp.
2313
2322
.10.1103/PhysRevB.49.2313
11.
Sigalas
,
M.
,
Economou
,
E.
, and
Kafesaki
,
M.
,
1994
, “
Spectral Gaps for Electromagnetic and Scalar Waves: Possible Explanation for Certain Differences
,”
Phys. Rev. B
,
50
(5), pp.
3393
3396
.10.1103/PhysRevB.50.3393
12.
Martínez-Sala
,
R.
,
Sancho
,
J.
,
Sánchez
,
J. V.
,
Gómez
,
V.
,
Llinares
,
J.
, and
Meseguer
,
F.
,
1995
, “
Sound Attenuation by Sculpture
,”
Nature
,
378
, p.
241
.10.1038/378241a0
13.
Sánchez-Pérez
,
J. V.
,
Caballero
,
D.
,
Martínez-Sala
,
R.
,
Rubio
,
C.
,
Sánchez-Dehesa
,
J.
,
Meseguer
,
F.
,
Llinares
,
J.
, and
Gálvez
,
F.
,
1998
, “
Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders
,”
Phys. Rev. Lett.
,
80
(
24
), pp.
5325
5328
.10.1103/PhysRevLett.80.5325
14.
Kushwaha
,
M.
,
1997
, “
Stop-Bands for Periodic Metallic Rods: Sculptures That Can Filter the Noise
,”
Appl. Phys. Lett.
,
70
(24), p.
3218
.10.1063/1.119130
15.
Robertson
,
W. M.
, and
Rudy
J. F.
, III
,
1998
, “
Measurement of Acoustic Stop Bands in Two-Dimensional Periodic Scattering Arrays
,”
J. Acoust. Soc. Am.
,
104
(
2
), pp.
694
699
.10.1121/1.423344
16.
Khelif
,
A.
,
Choujaa
,
A.
,
Djafari-Rouhani
,
B.
,
Wilm
,
M.
,
Ballandras
,
S.
, and
Laude
,
V.
,
2003
, “
Trapping and Guiding of Acoustic Waves by Defect Modes in a Full-Band-Gap Ultrasonic Crystal
,”
Phys. Rev. B
,
68
(21), p.
214301
.10.1103/PhysRevB.68.214301
17.
Sánchez-Pérez
,
J.
,
Rubio
,
C.
,
Martínez-Sala
,
R.
,
Sánchez-Grandia
,
R.
, and
Gómez
,
V.
,
2002
, “
Acoustic Barriers Based on Periodic Arrays of Scatterers
,”
Appl. Phys. Lett.
,
81
(27), p.
5240
.10.1063/1.1533112
18.
Romero-García
,
V.
, and
Sánchez-Pérez
,
L. G.-R.
,
2011
, “
Tunable Wideband Bandstop Acoustic Filter Based on Two-Dimensional Multiphysical Phenomena Periodic Systems
,”
J. Appl. Phys.
,
110
(1), p.
014904
.10.1063/1.3599886
19.
Qiu
,
C.
,
Liu
,
Z.
,
Shi
,
J.
, and
Chan
,
C. T.
,
2005
, “
Directional Acoustic Source Based on the Resonant Cavity of Two-Dimensional Phononic Crystals
,”
Appl. Phys. Lett.
,
86
(22), p.
224105
.10.1063/1.1942642
20.
Qiu
,
C.
, and
Liu
,
Z.
,
2006
, “
Acoustic Directional Radiation and Enhancement Caused by Band-Edge States of Two-Dimensional Phononic Crystals
,”
Appl. Phys. Lett.
,
89
(6), p.
063106
.10.1063/1.2335975
21.
Sigalas
,
M.
,
1998
, “
Defect States of Acoustic Waves in a Two-Dimensional Lattice of Solid Cylinders
,”
J. Appl. Phys.
,
84
(6), p.
3026
.10.1063/1.368456
22.
Tanaka
,
Y.
,
Yano
,
T.
, and
Ichiro Tamura
,
S.
,
2007
, “
Surface Guided Waves in Two-Dimensional Phononic Crystals
,”
Wave Motion
,
44
(6), pp.
501
512
.10.1016/j.wavemoti.2007.02.009
23.
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Djafari-Rouhani
,
B.
,
Pennec
,
Y.
, and
Hladky-Hennion
,
A.-C.
,
2008
, “
Absolute Forbidden Bands and Waveguiding in Two-Dimensional Phononic Crystal Plates
,”
Phys. Rev. B
,
77
(8), p.
085415
.10.1103/PhysRevB.77.085415
24.
Zhao
,
Y.
, and
Yuan
,
L. B.
,
2009
, “
Characteristics of Multi-Point Defect Modes in 2S Phononic Crystals
,”
J. Phys. D: Appl. Phys.
,
42
(1), p.
015403
.10.1088/0022-3727/42/1/015403
25.
Wu
,
L.
,
Chen
,
L.
, and
Liu
,
C.
,
2009
, “
Experimental Investigation of the Acoustic Pressure in Cavity of a Two-Dimensional Sonic Crystal
,”
Physica B
,
404
(12–13), pp.
1766
1770
.10.1016/j.physb.2009.02.025
26.
Hussein
,
M.
,
2009
, “
Theory of Damped Bloch Waves in Elastic Media
,”
Phys. Rev. B
,
80
(21), p.
212301
.10.1103/PhysRevB.80.212301
27.
Romero-García
,
V.
,
Vasseur
,
J. O.
,
Hladky-Hennion
,
A. C.
,
Garcia-Raffi
,
L. M.
, and
Sánchez-Pérez
,
J. V.
,
2011
, “
Level Repulsion and Evanescent Waves in Sonic Crystals
,”
Phys. Rev. B
,
84
(21), p.
212302
.10.1103/PhysRevB.84.212302
28.
Farzbod
,
F.
, and
Leamy
,
M.
,
2011
, “
Analysis of Bloch's Method in Structures With Energy Dissipation
,”
ASME J. Acoust. Vib.
,
133
(5), p.
051010
.10.1115/1.4003943
29.
Laude
,
V.
,
Moiseyenko
,
R.
,
Benchabane
,
S.
, and
Delercq
,
N.
,
2011
, “
Bloch Wave Deafness and Modal Conversion at a Phononic Cyrstal Boundary
,”
AIP Adv.
,
1
(4), p.
041402
.10.1063/1.3675828
30.
Moiseyenko
,
R.
,
Herbison
,
S.
,
Delercq
,
N.
, and
Laude
,
V.
,
2012
, “
Phononic Crystal Diffraction Gratings
,”
J. Appl. Phys.
,
111
(3), p.
034907
.10.1063/1.3682113
31.
Romero-García
,
V.
,
Vasseur
,
J.
,
Garcia-Raffi
,
L.
, and
Hladky-Hennion
,
A.-C.
,
2012
, “
Theoretical and Experimental Evidence of Level Repulsion States and Evanescent Modes in Sonic Crystal Stubbed Waveguides
,”
New J. Phys.
,
14
, p.
023049
.10.1088/1367-2630/14/2/023049
32.
Sánchez-Morcillo
,
V.
,
Staliunas
,
K.
,
Espinosa
,
V.
,
Pérez-Arjona
,
I.
,
Redondo
,
J.
, and
Soliveres
,
E.
,
2009
, “
Propagation of Sound Beams Behind Sonic Crystals
,”
Phys. Rev. B
,
80
(13), p.
134303
.10.1103/PhysRevB.80.134303
33.
Rakich
,
P. T.
,
Dahlem
,
M. S.
,
Tandon
,
S.
,
Ibanescu
,
M.
,
Soljai
,
M.
,
Petrich
,
G. S.
,
Joannopoulos
,
J. D.
,
Kolodziesjski
,
L. A.
, and
Ippen
,
E. P.
,
2006
, “
Achieving Centimeter-Scale Super-Collimation in Ultra Large Area Photonic Crystals
,”
Nature Mater.
,
5
, pp.
93
96
.10.1038/nmat1568
34.
Lu
,
Z.
,
Shi
,
S.
,
Murakowski
,
A.
,
Schneider
,
G. J.
,
Schuetz
,
C. A.
, and
Prather
,
D. W.
,
2006
, “
Experimental Demonstration of Self-Collimation Inside a Three-Dimensional Photonic Crystal
,”
Phys. Rev. Lett.
,
96
(17), p.
173902
.10.1103/PhysRevLett.96.173902
35.
Pérez-Arjona
,
I.
,
Sánchez-Morcillo
,
V. J.
,
Redondo
,
J.
,
Espinosa
,
V.
, and
Staliunas
,
K.
,
2007
, “
Theoretical Prediction of the Nondiffractive Propagation of Sonic Waves Through Periodic Acoustic Media
,”
Phys. Rev. B
,
75
(1), p.
014304
.10.1103/PhysRevB.75.014304
36.
Espinosa
,
V.
,
Sánchez-Morcillo
,
V. J.
,
Staliunas
,
K.
,
Pérez-Arjona
,
I.
, and
Redondo
,
J.
,
2007
, “
Subdiffractive Propagation of Ultrasound in Sonic Crystals
,”
Phys. Rev. B
,
76
(14), p.
140302(R)
.10.1103/PhysRevB.76.140302
37.
Luo
,
C.
,
Johnson
,
S. G.
,
Joannopoulos
,
J. D.
, and
Pendry
,
J. B.
,
2002
, “
All-Angle Negative Refraction Without Negative Effective Index
,”
Phys. Rev. B
,
65
(20), p.
201104(R)
.10.1103/PhysRevB.65.201104
38.
Luo
,
C.
,
Johnson
,
S. G.
,
Joannopoulos
,
J. D.
, and
Pendry
,
J. B.
,
2003
, “
Subwavelength Imaging in Photonic Crystals
,”
Phys. Rev B
,
68
(4), p.
045115
.10.1103/PhysRevB.68.045115
39.
Yang
,
S.
,
Page
,
J. H.
,
Liu
,
Z.
,
Cowan
,
M. L.
,
Chan
,
C.
, and
Sheng
,
P.
,
2004
, “
Focusing of Sound in a 3D Phononic Crystal
,”
Phys. Rev. Lett.
,
93
(
2
), p.
024301
.10.1103/PhysRevLett.93.024301
40.
Ke
,
M.
,
Liu
,
Z.
,
Qiu
,
C.
,
Wang
,
W.
,
Shi
,
J.
,
Wen
,
W.
, and
Sheng
,
P.
,
2005
, “
Negative-Refraction Imaging With Two-Dimensional Phononic Crystals
,”
Phys. Rev. B
,
72
(6), p.
064306
.10.1103/PhysRevB.72.064306
41.
Feng
,
L.
,
Liu
,
X.
,
Chen
,
Y.
,
Huang
,
Z.
,
Mao
,
Y.
,
Chen
,
Y.
,
Zi
,
J.
, and
Zhu
,
Y.
,
2005
, “
Negative Refraction of Acoustic Waves in Two-Dimensional Sonic Crystals
,”
Phys. Rev. B
,
72
(3), p.
033108
.10.1103/PhysRevB.72.033108
42.
Romero-García
,
V.
,
Sánchez-Pérez
,
J.
, and
Garcia-Raffi
,
L.
,
2010
, “
Evanescent Modes in Sonic Crystals: Complex Dispersion Relation and Supercell Approximation
,”
J. Appl. Phys.
,
108
(4), p.
044907
.10.1063/1.3466988
43.
Laude
,
V.
,
Achaoui
,
Y.
,
Benchabane
,
S.
, and
Khelif
,
A.
,
2009
, “
Evanescent Bloch Waves and the Complex Band Structure of Phononic Crystals
,”
Phys. Rev. B
,
80
(9), p.
092301
.10.1103/PhysRevB.80.092301
44.
Romero-García
,
V.
,
Sánchez-Pérez
,
J.
, and
Garcia-Raffi
,
L.
,
2010
, “
Propagating and Evanescent Properties of Double-Point Defects in Sonic Crystals
,”
New. J. Phys.
,
12
, p.
083024
.10.1088/1367-2630/12/8/083024
45.
Romero-García
,
V.
,
Sánchez-Pérez
,
J.
,
Neira Ibáñez
,
S. C.
, and
Garcia-Raffi
,
L.
,
2010
, “
Evidences of Evanescent Bloch Waves in Phononic Crystals
,”
Appl. Phys. Lett.
,
96
(12), p.
124102
.10.1063/1.3367739
46.
Romero-García
,
V.
,
Garcia-Raffi
,
L. M.
, and
Sánchez-Pérez
,
J. V.
,
2011
, “
Evanescent Waves and Deaf Bands in Sonic Crystals
,”
AIP Adv.
,
1
(4), p.
041601
.10.1063/1.3675801
47.
Romero-García
,
V.
,
2010
, “
On the Control of Propagating Acoustic Waves in Sonic Crystals: Analytical, Numerical and Optimization Techniques
,” Ph.D. thesis, Instituto de Cienca de Materiales de Madrid (CSIC), Universitat Politècnica de València, València, Spain.
48.
Li
,
J.
, and
Chan
,
C.
,
2004
, “
Double-Negative Acoustic Metamaterial
,”
Phys. Rev. E
,
70
(5), p.
055602
.10.1103/PhysRevE.70.055602
49.
Guenneau
,
S.
,
Movchan
,
A.
,
Ptursson
,
G.
, and
Ramakrishna
,
S. A.
,
2007
, “
Acoustic Metamaterial for Sound Focusing and Confinement
,”
New J. Phys.
,
9
(11), p.
399
.10.1088/1367-2630/9/11/399
50.
Farhat
,
M.
,
Guenneau
,
S.
,
Enoch
,
S.
,
Tayeb
,
G.
,
Movchan
,
A. B.
, and
Movchan
,
N. V.
,
2008
, “
Analytical and Numerical Analysis of Lensing Effect for Linear Surface Water Waves Through a Square Array of Nearly Touching Rigid Square Cylinders
,”
Phys. Rev. E
,
77
(4), p.
046308
.10.1103/PhysRevE.77.046308
51.
Hsue
,
Y.
,
Freeman
,
A.
, and
Gu
,
B.
,
2005
, “
Extended Plane-Wave Expansion Method in Three-Dimensional Anisotropic Photonic Crystals
,”
Phys. Rev B
,
72
(19), p.
195118
.10.1103/PhysRevB.72.195118
52.
Martin
,
P.
,
2006
,
Multiple Scattering. Interaction of Time-Harmonic Waves With N Obstacles
,
Cambridge University Press
,
Cambridge, UK
.
53.
Chen
,
Y. Y.
, and
Ye
,
Z.
,
2001
, “
Theoretical Analysis of Acoustic Stop Bands in Two-Dimensional Periodic Scattering Arrays
,”
Phys. Rev. E
,
64
(3), p.
036616
.10.1103/PhysRevE.64.036616
54.
McGaughey
,
A. J. H.
,
Hussein
,
M. I.
,
Landry
,
E. S.
,
Kaviany
,
M.
, and
Hulbert
,
G. M.
,
2006
, “
Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal
,”
Phys. Rev. B
,
74
(10), p.
104304
.10.1103/PhysRevB.74.104304
55.
Landry
,
E. S.
,
Hussein
,
M. I.
, and
McGaughey
,
A. J. H.
,
2008
, “
Complex Superlattice Unit Cell Designs for Reduced Thermal Conductivity
,”
Phys. Rev. B
,
77
(18), p.
184302
.10.1103/PhysRevB.77.184302
56.
Hopkins
,
P. E.
,
Reinke
,
C. M.
,
Su
,
M. F.
, III
,
Shaner
,
E. A.
,
Leseman
,
Z. C.
,
Serrano
,
J. R.
,
Phinney
,
L. M.
, and
El-Kady
,
I.
,
2011
, “
Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning
,”
Nano Lett.
,
11
(1), pp.
107
112
.10.1021/nl102918q
57.
Davis
,
B. L.
, and
Hussein
,
M. I.
,
2011
, “
Thermal Characterization of Nanoscale Phononic Crystals Using Supercell Lattice Dynamics
,”
AIP Adv.
,
1
(4), p.
041701
.10.1063/1.3675798
58.
Gorishnyy
,
T.
,
Ullal
,
C. K.
,
Maldovan
,
M.
,
Fytas
,
G.
, and
Thomas
,
E. L.
,
2005
, “
Hypersonic Phononic Crystals
,”
Phys. Rev. Lett.
,
94
(11), p.
115501
.10.1103/PhysRevLett.94.115501
You do not currently have access to this content.