Directional acoustic cloaks that conceal an aluminum cylinder for airborne sound waves are presented in this paper. Subwavelength cylindrical aluminum inclusions in air constitute the cloak design to aid practical realizations. The positions and radii of the subwavelength cylinders are determined by minimizing scattering from the cloak-structure and cylinder using the gradient-based topology optimization method. In the final optimization step, the radii of the subwavelength cylinders are constrained to three discrete values. A near-perfect narrow-banded and angular cloaking effect is obtained by optimizing for one target frequency. To get a larger bandwidth, the acoustic cloak is optimized for three frequencies at the cost of reduced peak cloaking performance at the center frequency.

References

References
1.
Pendry
,
J. B.
,
Schurig
,
D.
, and
Smith
,
D. R.
,
2006
, “
Controlling Electromagnetic Fields
,”
Science
,
312
(
5781
), pp.
1780
1782
.10.1126/science.1125907
2.
Schurig
,
D.
,
Mock
,
J. J.
,
Justice
,
B. J.
,
Cummer
,
S. A.
,
Pendry
,
J. B.
,
Starr
,
A. F.
, and
Smith
,
D. R.
,
2006
, “
Metamaterial Electromagnetic Cloak at Microwave Frequencies
,”
Science
,
314
(
5801
), pp.
977
980
.10.1126/science.1133628
3.
Farhat
,
M.
,
Guenneau
,
S.
, and
Enoch
,
S.
,
2009
, “
Ultrabroadband Elastic Cloaking in Thin Plates
,”
Phys. Rev. Lett.
,
103
, p.
024301
.10.1103/PhysRevLett.103.024301
4.
Stenger
,
N.
,
Wilhelm
,
M.
, and
Wegener
,
M.
,
2012
, “
Experiments on Elastic Cloaking in Thin Plates
,”
Phys. Rev. Lett.
,
108
, p.
014301
.10.1103/PhysRevLett.108.014301
5.
Renger
,
J.
,
Kadic
,
M.
,
Dupont
,
G.
,
Aćimović
,
S. S.
,
Guenneau
,
S.
,
Quidant
,
R.
, and
Enoch
,
S.
,
2010
, “
Hidden Progress: Broadband Plasmonic Invisibility
,”
Opt. Express
,
18
(
15
), pp.
15757
15768
.10.1364/OE.18.015757
6.
Zhang
,
S.
,
Genov
,
D. A.
,
Sun
,
C.
, and
Zhang
,
X.
,
2008
, “
Cloaking of Matter Waves
,”
Phys. Rev. Lett.
,
100
, p.
123002
.10.1103/PhysRevLett.100.123002
7.
Farhat
,
M.
,
Enoch
,
S.
,
Guenneau
,
S.
, and
Movchan
,
A. B.
,
2008
, “
Broadband Cylindrical Acoustic Cloak for Linear Surface Waves in a Fluid
,”
Phys. Rev. Lett.
,
101
, p.
134501
.10.1103/PhysRevLett.101.134501
8.
Cummer
,
S. A.
, and
Schurig
,
D.
,
2007
, “
One Path to Acoustic Cloaking
,”
New J. Phys.
,
9
(
3
), p.
45
.10.1088/1367-2630/9/3/045
9.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
.10.1063/1.2803315
10.
Zhang
,
S.
,
Xia
,
C.
, and
Fang
,
N.
,
2011
, “
Broadband Acoustic Cloak for Ultrasound Waves
,”
Phys. Rev. Lett.
,
106
, p.
024301
.10.1103/PhysRevLett.106.024301
11.
Popa
,
B.-I.
, and
Cummer
,
S. A.
,
2011
, “
Homogeneous and Compact Acoustic Ground Cloaks
,”
Phys. Rev. B
,
83
, p.
224304
.10.1103/PhysRevB.83.224304
12.
Popa
,
B.-I.
,
Zigoneanu
,
L.
, and
Cummer
,
S. A.
,
2011
, “
Experimental Acoustic Ground Cloak in Air
,”
Phys. Rev. Lett.
,
106
, p.
253901
.10.1103/PhysRevLett.106.253901
13.
Li
,
J.
, and
Pendry
,
J. B.
,
2008
, “
Hiding Under the Carpet: A New Strategy for Cloaking
,”
Phys. Rev. Lett.
,
101
, p.
203901
.10.1103/PhysRevLett.101.203901
14.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2008
, “
Acoustic Cloaking in Two Dimensions: A Feasible Approach
,”
New J. Phys.
,
10
(
6
), p.
063015
.10.1088/1367-2630/10/6/063015
15.
Pendry
,
J. B.
, and
Li
,
J.
,
2008
, “
An Acoustic Metafluid: Realizing a Broadband Acoustic Cloak
,”
New J. Phys.
,
10
(
11
), p.
115032
.10.1088/1367-2630/10/11/115032
16.
Popa
,
B.-I.
, and
Cummer
,
S. A.
,
2009
, “
Design and Characterization of Broadband Acoustic Composite Metamaterials
,”
Phys. Rev. B
,
80
, p.
174303
.10.1103/PhysRevB.80.174303
17.
Baz
,
A. M.
,
2010
, “
An Active Acoustic Metamaterial With Tunable Effective Density
,”
ASME J. Vib. Acoust.
,
132
(
4
), p.
041011
.10.1115/1.4000983
18.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2010
, “
Anisotropic Mass Density by Radially Periodic Fluid Structures
,”
Phys. Rev. Lett.
,
105
, p.
174301
.10.1103/PhysRevLett.105.174301
19.
Andkjær
,
J.
, and
Sigmund
,
O.
,
2011
, “
Topology Optimized Low-Contrast All-Dielectric Optical Cloak
,”
Appl. Phys. Lett.
,
98
(
2
), p.
021112
.10.1063/1.3540687
20.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization, Theory, Methods and Applications
,
Springer
,
Berlin
.
21.
Andkjær
,
J.
, and
Sigmund
,
O.
,
2011
, “
Topology Optimized Acoustic and All-Dielectric Optical Cloaks
,”
Metamaterials '2011: The Fifth International Congress on Advanced Electromagnetic Materials in Microwave and Optics
,
Barcelona, Spain
, October 10–13.
22.
García-Chocano
,
V. M.
,
Sanchis
,
L.
,
Díaz-Rubio
,
A.
,
Martínez-Pastor
,
J.
,
Cervera
,
F.
,
Llopis-Pontiveros
,
R.
, and
Sánchez-Dehesa
,
J.
,
2011
, “
Acoustic Cloak for Airborne Sound by Inverse Design
,”
Appl. Phys. Lett.
,
99
(
7
), p.
074102
.10.1063/1.3623761
23.
Sigmund
,
O.
,
2011
, “
On the Usefulness of Non-Gradient Approaches in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
43
, pp.
589
596
.10.1007/s00158-011-0638-7
24.
Dühring
,
M.
,
Jensen
,
J.
, and
Sigmund
,
O.
,
2008
, “
Acoustic Design by Topology Optimization
,”
J. Sound Vib.
,
317
, pp.
557
575
.10.1016/j.jsv.2008.03.042
25.
Yoon
,
G. H.
,
Jensen
,
J. S.
, and
Sigmund
,
O.
,
2007
, “
Topology Optimization for Acoustic Structure Interaction Problems
,”
Int. J. Numer. Methods Eng.
,
70
(
9
), pp.
1049
1075
.10.1002/nme.1900
26.
Saxena
,
A.
,
2011
, “
Topology Design With Negative Masks Using Gradient Search
,”
Struct. Multidiscip. Optim.
,
44
, pp.
629
649
.10.1007/s00158-011-0649-4
27.
Guest
,
J. K.
,
2011
, “
A Projection-Based Topology Optimization Approach to Distributing Discrete Features in Structures and Materials
,”
9th World Congress on Structural and Multidisciplinary Optimization
,
Shizuoka, Japan
, June 13–17.
28.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.10.1002/nme.1620240207
29.
Jensen
,
J. S.
, and
Sigmund
,
O.
,
2005
, “
Topology Optimization of Photonic Crystal Structures: A High-Bandwidth Low-Loss T-Junction Waveguide
,”
J. Opt. Soc. Am. B
,
22
(
6
), pp.
1191
1198
.10.1364/JOSAB.22.001191
You do not currently have access to this content.