In this paper, localization phenomena of in-plane time-harmonic elastic waves propagating in layered phononic crystals (PNCs) with different fractal superlattices are studied. For this purpose, oblique wave propagation in layered structures is considered. To describe wave localization phenomena, the localization factor is applied and computed by the transfer matrix method. Three typical fractal superlattices are considered, namely, the Cantorlike fractal superlattice (CLFSL), the golden-section fractal superlattice (GSFSL), and the Fibonacci fractal superlattice (FFSL). Numerical results for the localization factors of CLFSL, GSFSL, and FFSL are presented and analyzed. The results show that the localization factor of a CLFSL exhibits an approximate similarity and band-splitting properties. The number of decomposed bandgaps of the GSFSL and FFSL follows the composition of the special fractal structures. In addition, with increasing fractal series, the value of the localization factor is enlarged. These results are of great importance for structure design of fractal PNCs.

References

References
1.
Liu
,
N. H.
,
Feng
,
W. G.
, and
Wu
,
X.
,
1995
, “
Propagation of Waves Through One-Dimensional Cantor-Like Fractal Media
,”
Commun. Theor. Phys.
,
23
(
2
), pp. 149–154.
2.
Liu
,
N. H.
,
1997
, “
Propagation of Light Waves in Thue-Morse Dielectric Multilayers
,”
Phys. Rev. B.
,
55
(
6
), pp. 3543–3547.10.1103/PhysRevB.55.3543
3.
Jiang
,
X. Y.
,
Zhang
,
Y. G.
,
Feng
,
S. L.
,
Huang
,
K. C.
,
Yi
,
Y. S.
, and
Joannopoulos
,
J. D.
,
2005
, “
Photonic Band Gaps and Localization in the Thue-Morse Structures
,”
Appl. Phys. Lett.
,
86
(20), p.
201110
.10.1063/1.1928317
4.
Lei
,
H. P.
,
Chen
,
J.
,
Nouet
,
G.
,
Feng
,
S. L.
,
Gong
,
Q.
, and
Jiang
,
X. Y.
,
2007
, “
Photonic Band Gap Structures in the Thue-Morse Lattice
,”
Phys. Rev. B.
,
75
, p.
205109
.10.1103/PhysRevB.75.205109
5.
Miyamaru
,
F.
,
Saito
,
Y.
,
Takeda
,
M. W.
,
Hou
,
B.
,
Liu
,
L.
,
Wen
,
W.
, and
Sheng
,
P.
,
2008
, “
Terahertz Electric Response of Fractal Metamaterial Structures
,”
Phys. Rev. B.
,
77
, p.
045124
.10.1103/PhysRevB.77.045124
6.
Mejia-Salazar
,
J. R.
,
Porras-Montenegro
,
N.
,
Reyes-Gómez
,
E.
,
Cavalcanti
,
S. B.
, and
Oliveira
,
L. E.
,
2011
, “
Plasmon Polaritons in 1D Cantor-Like Fractal Photonic Superlattices Containing a Left-Handed Material
,”
EPL
,
95
, p.
24004
.10.1209/0295-5075/95/24004
7.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
, p.
2022
.10.1103/PhysRevLett.71.2022
8.
Chandra
,
H.
,
Deymier
,
P. A.
, and
Vasseur
,
J. O.
,
2004
, “
Elastic Wave Propagation Along Waveguides in Three-Dimensional Phononic Crystals
,”
Phys. Rev. B.
,
70
, p.
054302
.10.1103/PhysRevB.70.054302
9.
Kushwaha
,
M. S.
, and
Djafari-Rouhani
,
B.
,
2000
, “
Band-Gap Engineering in Two-Dimensional Periodic Photonic Crystals
,”
J. Appl. Phys.
,
88
(5), pp.
2877
–2884.10.1063/1.1288229
10.
Wang
,
G.
,
Yu
,
D. L.
,
Wen
,
J. H.
,
Liu
,
Y. Z.
, and
Wen
,
X. S.
,
2004
, “
One-Dimensional Phononic Crystals With Locally Resonant Structures
,”
Phys. Lett. A.
,
327
(5–6), pp. 512–521.10.1016/j.physleta.2004.05.047
11.
Li
,
F. M.
,
Wang
,
Y. S.
,
Huang
,
W. H.
, and
Hu
,
C.
,
2005
, “
Advances of Vibration Localization in Disordered Periodic Structures
,”
Adv. Mech. (Chinese Edition)
,
35
(
4
), pp. 498–512.10.3901/CJME.2005.04.498
12.
Zhang
,
X.
,
Liu
,
Z. Y.
, and
Liu
,
Y. Y.
,
2004
, “
The Optimum Elastic Wave Band Gaps in Three Dimensional Phononic Crystals With Local Resonance
,”
Eur. Phys. J. B.
,
42
(
4
), pp. 477–482.10.1140/epjb/e2005-00005-y
13.
Southern
,
B. W.
, and
Douchant
,
A. R.
,
1985
, “
Phonon-Fracton Crossover on Fractal Lattices
,”
Phys. Rev. Lett.
,
55
(
9
), pp. 966–968.10.1103/PhysRevLett.55.966
14.
Luo
,
Q.
,
2002
, “
Acoustic Waves Propagation in 1D Quasiperiodic System
,”
J. Nanjing Normal Univ.
,
25
, p.
024
.
15.
Aynaou
,
H.
,
EI Boudouti
,
E. H.
,
Djafari-Rouhani
,
B.
,
Akjouj
,
A.
, and
Velasco
,
V. R.
,
2005
, “
Propagation and Localization of Acoustic Waves in Fibonacci Phononic Circuits
,”
J. Phys: Condens. Matter.
,
17
(
27
), pp. 4245–4262.10.1088/0953-8984/17/27/002
16.
Castiñeira-Ibáñez
,
S.
,
Romero-García
,
V.
,
Sánchez-Pérez
,
J. V.
, and
Garcia-Raffi
,
L. M.
,
2010
, “
Overlapping of Acoustic Bandgaps Using Fractal Geometries
,”
EPL.
,
92
(2), p.
24007
.10.1209/0295-5075/92/24007
17.
Chen
,
A. L.
,
Wang
,
Y. S.
,
Guo
,
Y. F.
, and
Wang
,
Z. D.
,
2008
, “
Band Structures of Fibonacci Phononic Quasicrystals
,”
Solid. State. Commun.
,
145
(
3
), pp. 103–108.10.1016/j.ssc.2007.10.023
18.
Chen
,
A. L.
,
Wang
,
Y. S.
,
Yu
,
G. L.
,
Guo
,
Y. F.
, and
Wang
,
Z. D.
,
2008
, “
Elastic Wave Localization in Two-Dimensional Phononic Crystals With One-Dimensional Quasi-Periodicity and Random Disorder
,”
Acta. Mech. Solida. Sin.
,
21
(
6
), pp. 517–528.10.1007/s10338-008-0862-x
19.
Velo
,
A. P.
,
Gazonas
,
G. A.
,
Bruder
,
E.
, and
Rodriguez
,
N.
,
2008
, “
Recursive Dispersion Relations in One-Dimensional Periodic Elastic Media
,”
SIAM J. Appl. Math.
,
69
(
3
), pp. 670–689.10.1137/070692595
20.
Hussein
,
M. I.
,
Hamza
,
K.
,
Hulbert
,
G. M.
,
Scott
,
R. A.
, and
Saitou
,
K.
,
2006
, “
Multiobjective Evolutionary Optimization of Periodic Layered Materials for Desired Wave Dispersion Characteristics
,”
Struct. Multidisc. Optim.
,
31
(
1
), pp. 60–75.10.1007/s00158-005-0555-8
21.
Miklowitz
,
J.
,
1978
,
The Theory of Elastic Waves and Waveguides
,
North-Holland Publishing Co.
,
Amsterdam
.
22.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Phys. D.
,
16
(
3
), pp. 285–317.10.1016/0167-2789(85)90011-9
23.
Arneodo
,
A.
,
Argoul
,
F.
,
Bacry
,
E.
,
Muzy
,
J. F.
, and
Tabard
,
M.
,
1992
, “
Golden Mean Arithmetic in the Fractal Branching of Diffusion-Limited Aggregates
,”
Phys. Rev. Lett.
,
68
(
23
), pp. 3456–3459.10.1103/PhysRevLett.68.3456
You do not currently have access to this content.