This study constructs a new phononic crystal acoustic wave device that adopts a graphenelike structure and is composed of piezoelectric zinc oxide (ZnO) material. We employed the finite-element method to determine periodic boundary conditions. Following Bloch's theorem, we analyzed the acoustic wave propagation of the proposed graphenelike structure in the frequency domain to understand the band gap effect and oscillation behavior. We also investigated the band gap variation and modal distortion tendencies of the piezoelectric ZnO material in the two-dimensional graphenelike structure under the condition of changing chain structure diameters and bonding rod widths between the atoms columns to develop an optimal acoustic wave device.

References

References
1.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
, pp.
666
669
.10.1126/science.1102896
2.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Katsnelson
,
M. I.
,
Grigorieva
,
I. V.
,
Dubonos
,
S. V.
, and
Firsov
,
A. A.
,
2005
, “
Two Dimensional Gas of Massless Dirac Fermions in Graphene
,”
Nature
,
438
, pp.
197
200
.10.1038/nature04233
3.
Kohlschütter
,
V.
, and
Haenni
,
P.
,
1918
, “
Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure
,”
Z. Anorg. Allg. Chem.
,
105
(
1
), pp.
121
144
.10.1002/zaac.19191050109
4.
Nair
,
R. R.
,
Blake
,
P.
,
Grigorenko
,
A. N.
,
Novoselov
,
K. S.
,
Booth
,
T. J.
,
Stauber
,
T.
,
Peres
,
N., M. R.
, and
Geim
,
A. K.
,
2008
, “
Fine Structure Constant Defines Visual Transparency of Graphene
,”
Science
,
320
(
5881
), p.
1308
.10.1126/science.1156965
5.
Ruess
,
G.
, and
Vogt
,
F.
,
1948
, “
Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd
,”
Monatshefte für Chemie
,
78
(
3–4
), pp.
222
242
.10.1007/BF01141527
6.
Geim
,
A. K.
, and
Novoselov
,
K. S.
,
2007
, “
The Rise of Graphene
,”
Nature Mater.
,
6
(
3
), pp.
183
191
.10.1038/nmat1849
7.
Savage
,
N.
,
2009
, “
Researchers Unzip Carbon Nanotubes to Make Ribbons of Graphene: A New Route to the Narrow Grapheme Ribbons Needed in Electronics
,” IEEE Spectrum, April 16, available at http://spectrum.ieee.org/semiconductors/materials/researchers-unzip-carbon-nanotubes-to-make-ribbons
8.
Bae
,
S.
,
Kim
,
H.
,
Lee
,
Y.
,
Xu
,
X.
,
Park
,
J.-S.
,
Zheng
,
Y.
,
Balakrishnan
,
J.
,
Lei
,
T.
,
Ri Kim
,
H.
,
Song
,
Y. I.
,
Kim
,
Y.-J.
,
Kim
,
K. S.
,
Ozyilmaz
,
B.
,
Ahn
,
J.-H.
,
Hong
,
B. H.
, and
Iijima
,
S.
,
2010
, “
Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes
,”
Nat Nano
5
(
8
), pp.
574
578
.10.1038/nnano.2010.132
9.
Berger
,
C.
,
Song
,
Z.
,
Li
,
T.
,
Li
,
X.
,
Ogbazghi
,
A. Y.
,
Feng
,
R.
,
Dai
,
Z.
,
Marchenkov
,
A. N.
,
Conrad
,
E. H.
,
First
,
P. H.
, and
De Heer
,
W. A.
,
2004
, “
Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route Toward Graphene-Based Nanoelectronics
,”
J. Phys. Chem. B
,
108
(
52
), pp.
19912
19916
10.1021/jp040650f.
10.
Han.
,
M. Y.
,
Özyilmaz
,
B.
,
Zhang
,
Y.
, and
Kim
,
P.
,
2007
, “
Energy Band-Gap Engineering of Graphene Nanoribbons
,”
Phys. Rev. Lett.
,
98
, p.
206805
.10.1103/PhysRevLett.98.206805
11.
Yablonovitch
,
E.
,
1987
, “
Inhibited Spontaneous Emission in Solid-State Physics and Electronics
,”
Phys. Rev. Lett.
,
58
, pp.
2059
2062
.10.1103/PhysRevLett.58.2059
12.
John
,
S.
,
1987
, “
Strong Localization of Photons in Certain Disordered Dielectric Superlattices
,”
Phys. Rev. Lett.
,
58
, pp.
2486
2489
.10.1103/PhysRevLett.58.2486
13.
Ho
,
K. M.
,
Chan
,
C. T.
, and
Soukoulis
,
C. M.
,
1990
, “
Existence of a Photonic Gap in Periodic Dielectric Structures
,”
Phys. Rev. Lett.
,
65
, pp.
3152
3155
.10.1103/PhysRevLett.65.3152
14.
Villeneuve
,
P. R.
, and
Piché
,
M.
,
1992
, “
Photonic Band Gaps in Two-Dimensional Square Lattices: Square and Circular Rods
,”
Phys. Rev. B
,
46
, pp.
4973
4975
.10.1103/PhysRevB.46.4973
15.
Johnson
,
S. G.
, and
Joannopoulos
,
J. D.
,
2003
, “
Photonic Crystals: The Road From Theory to Practice
,”
Kluwer Academic Publishers
,
Boston
.
16.
Joannopoulos
,
J. D.
,
Meade
,
R. D.
, and
Winn
,
J. N.
,
1995
, “
Photonic Crystals: Molding the Flow of Light
,”
Princeton University Press
,
Princeton, NJ
.
17.
Mekis
,
A.
,
Chen
,
J. C.
,
Kurland
,
I.
,
Fan
,
S.
,
Villeneuve
,
P. R.
, and
Joannopoulos
,
J. D.
,
1996
, “
High Transmission Through Sharp Bands in Photonic Crystal Wave Guides
,”
Phys. Rev. Lett.
,
77
, pp.
3787
3790
.10.1103/PhysRevLett.77.3787
18.
Lakhtakia
,
A.
,
Varadan
,
V. V.
, and
Varadan
,
V. K.
,
1988
, “
Reflection Characteristics of an Elastic Slab Containing a Periodic Array of Circular Elastic Cylinders: P and SV Wave Analysis
,”
J. Acoust. Soc. Am.
,
83
, pp.
1267
1275
.10.1121/1.395982
19.
Sigalas
,
M.
, and
Ecconomou
,
E. N.
,
1992
, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
,
158
, pp.
377
382
.10.1016/0022-460X(92)90059-7
20.
Sigalas
,
M.
, and
Economou
,
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
, pp.
141
143
.10.1016/0038-1098(93)90888-T
21.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Diafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
, pp.
2022
2025
.10.1103/PhysRevLett.71.2022
22.
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Frantziskonis
,
G.
,
Hong
,
G.
,
Djafari-Rouhani
,
B.
, and
Dobrzynski
,
L. J.
,
1998
, “
Experimental Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Periodic Composite Media
,”
J. Phys.: Condens. Matter
,
10
, pp.
6051
6064
.10.1088/0953-8984/10/27/006
23.
Robillard
,
J.-F.
,
Muralidharan
,
K.
,
Bucay
,
J.
,
Deymier
,
P. A.
,
Beck
,
W.
, and
Barker
,
D.
,
2011
, “
Phononic Metamaterials for Thermal Management: An Atomistic Computational Study
,”
Chin. J. Phys.
,
49
, pp.
448
461
.
24.
Sigalas
,
M. M.
, and
Koukaras
,
E. N.
,
2012
, “
Phononic Bandgaps in Graphene-Based Materials
,”
Appl. Phys. Lett.
,
100
, p.
203109
.10.1063/1.4717746
25.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch's Method in Structures With Energy Dissipation
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051010
.10.1115/1.4003943
26.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch's Method and the Propagation Technique in Periodic Structures
,”
ASME J. Vib. Acoust.
,
133
(
3
), p.
031010
.10.1115/1.4003202
27.
Zhu
,
R. G.
,
Huang
,
L.
, and
Hu
,
G. K.
,
2012
, “
Effective Dynamic Properties and Multi-Resonant Design of Acoustic Metamaterials
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031006
.10.1115/1.4005825
28.
COMSOL Multiphysics
,
2009
,
Structural Mechanics, Manual
,
Comsol, AB
,
Stockholm, Sweden
.
29.
Huang
,
Z. G.
, and
Chen
,
Z. Y.
,
2011
, “
Acoustic Waves in Two-Dimensional Phononic Crystals With Reticular Geometric Structures
,”
ASME J. Vib. Acoust.
,
133
(
3
), p.
031011
.10.1115/1.4003201
30.
Huang
,
Z. G.
,
2011
, “
Silicon-Based Filters, Resonators and Acoustic Channels With Phononic Crystal Structures
,”
J. Phys. D: Appl. Phys.
,
44
, p.
245406
.10.1088/0022-3727/44/24/245406
31.
Wu
,
T.-T.
,
Huang
,
Z. G.
,
Tsai
,
T. C.
, and
Wu
,
T. C.
,
2008
, “
Evidence of Complete Band Gap and Resonances in a Plate With Periodic Stubbed Surface
,”
Appl. Phys. Lett.
,
93
, p.
111902
.10.1063/1.2970992
32.
Yudistira
,
D.
,
Pennec
,
Y.
,
Diafari-Rouhani
,
B.
,
Dupont
,
S.
, and
Laude
,
V.
,
2012
, “
Non-Radiative Complete Surface Acoustic Wave Bandgap for Finite-Depth Holey Phononic Crystal in Lithium Niobate
,”
Appl. Phys. Lett.
,
100
, p.
061912
.10.1063/1.3684839
33.
Tanaka
,
Y.
,
Tomoyasu
,
Y.
, and
Tamura
,
S. I.
,
2000
, “
Band Structure of Acoustic Waves in Phononic Lattices: Two-Dimensional Composites With Large Acoustic Mismatch
,”
Phys. Rev. B
,
62
(
11
), pp.
7387
7392
.10.1103/PhysRevB.62.7387
You do not currently have access to this content.