The work describes the manufacturing, mechanical properties, and wave propagation characteristics of a pyramidal lattice made exhibiting an auxetic (negative Poisson's ratio) behavior. Contrary to similar lattice tessellations produced using metal cores, the pyramidal lattice described in this work is manufactured using a kirigami (origami plus cutting pattern) technique, which can be applied to a large variety of thermoset and thermoplastic composites. Due to the particular geometry created through this manufacturing technique, the kirigami pyramidal lattice shows an inversion between in-plane and out-of-plane mechanical properties compared to classical honeycomb configurations. Long wavelength approximations are used to calculate the slowness curves, showing unusual zero-curvature phononic properties in the transverse plane. A novel 2D wave propagation technique based on Bloch waves for damped structures is also applied to evaluate the dispersion behavior of composite (Kevlar/epoxy) lattices with intrinsic hysteretic loss. The 2D wave propagation analysis shows evanescence directivity at different frequency bandwidths and complex modal behavior due to unusual deformation mechanism of the lattice.

References

References
1.
Queheillalt
,
D. T.
, and
Wadley
,
H. N.
,
2005
, “
Pyramidal Lattice Truss Structures With Hollow Trusses
,”
Mater. Sci. Eng., A
,
397
, pp.
132
137
.10.1016/j.msea.2005.02.048
2.
Queheillalt
,
D. T.
, and
Wadley
,
H. N.
,
2009
, “
Titanium Alloy Lattice Truss Structures
,”
Mater. Des.
,
30
, pp.
1966
1975
.10.1016/j.matdes.2008.09.015
3.
Pingle
,
S. M.
,
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Wadley
,
H. N. G.
,
2011
, “
Collapse Mechanism Maps for a Hollow Pyramidal Lattice
,”
Proc. R. Soc. London, Ser. A
,
467
(
2128
), pp.
985
1011
.10.1098/rspa.2010.0329
4.
Wadley
,
H. N.
,
2006
, “
Multifunctional Periodic Cellular Metals
,”
Philos. Trans. R. Soc. London, Ser. A
,
364
(
1838
), pp.
31
68
.10.1098/rsta.2005.1697
5.
Alderson
,
A.
, and
Alderson
,
K. L.
,
2007
, “
Auxetic Materials
,”
Proc. Inst. Mech. Eng., Part G
,
221
, pp.
565
575
.10.1243/09544100JAERO185
6.
Gonella
,
S.
, and
Ruzzene
,
M.
,
2008
, “
Analysis of In-Plane Wave Propagation in Hexagonal and Re-Entrant Lattices
,”
J. Sound Vib.
,
312
, pp.
125
139
.10.1016/j.jsv.2007.10.033
7.
Spadoni
,
A.
, and
Ruzzene
,
M.
,
2007
, “
Numerical and Experimental Analysis of the Static Compliance of Chiral Truss Core Airfoils
,”
J. Mech. Mater. Struct.
,
2
, pp.
965
981
.10.2140/jomms.2007.2.965
8.
Tee
,
K. F.
,
Spadoni
,
A.
,
Scarpa
,
F.
, and
Ruzzene
,
M.
,
2010
, “
Wave Propagation in Auxetic Tetrachiral Honeycombs
,”
ASME J. Vibr. Acoust.
,
132
, p.
031007
.10.1115/1.4000785
9.
Bettini
,
P.
,
Airoldi
,
A.
,
Sala
,
G.
,
Landro
,
L. D.
,
Ruzzene
,
M.
, and
Spadoni
,
A.
,
2010
, “
Composite Chiral Structures for Morphing Airfoils: Numerical Analyses and Development of a Manufacturing Process
,”
Composites, Part B
,
41
, pp.
133
147
.10.1016/j.compositesb.2009.10.005
10.
Martin
,
J.
,
Heyder-Bruckner
,
J. J.
,
Remillat
,
C. D. L.
,
Scarpa
,
F.
,
Potter
,
K.
, and
Ruzzene
,
M.
,
2008
, “
The Hexachiral Prismatic Wingbox Concept
,”
Phys. Status Solidi B
,
245
, pp.
570
577
.10.1002/pssb.200777709
11.
Grima
,
J. N.
,
Williams
,
J. J.
,
Gatt
,
R.
, and
Evans
,
K. E.
,
2005
, “
Modelling of Auxetic Networked Polymers Built From Calix[4]Arene Building Blocks
,”
Mol. Simul.
,
31
(
13
), pp.
907
913
.10.1080/08927020500392114
12.
Coluci
,
V. R.
,
Hall
,
L. J.
,
Kozlov
,
M. E.
,
Zhang
,
M.
,
Dantas
,
S. O.
,
Galvão
,
D. S.
, and
Baughman
,
R. H.
,
2008
, “
Modeling the Auxetic Transition for Carbon Nanotube Sheets
,”
Phys. Rev. B
,
78
,
p
. 115408.10.1103/PhysRevB.78.115408
13.
Hall
,
L. J.
,
Coluci
,
V. R.
,
Galvão
,
D. S.
,
Kozlov
,
M. E.
,
Zhang
,
M.
,
Dantas
,
S. O.
, and
Baughman
,
R. H.
,
2008
, “
Sign Change of Poisson's Ratio for Carbon Nanotube Sheets
,”
Science
,
320
(
5875
), pp.
504
507
.10.1126/science.1149815
14.
Nojima
,
T.
, and
Saito
,
K.
,
2006
, “
Development of Newly Designed Ultra-Light Core Structures
,”
JSME Int. J., Ser. A
,
49
, pp.
38
42
.10.1299/jsmea.49.38
15.
Saito
,
K.
,
Scarpa
,
F.
, and
Neville
,
R.
,
2011
, “
Origami Composite Auxetic Honeycomb
,”
16th International Conference on Composite Structures (ICCS16)
, Porto, Portugul, June 28–30, Paper No. 117.
16.
Saito
,
K.
,
Agnese
,
F.
, and
Scarpa
,
F.
,
2011
, “
A Cellular Kirigami Morphing Wingbox Concept
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
935
944
.10.1177/1045389X11416030
17.
Norris
,
A. N.
,
Shuvalov
,
A. L.
, and
Kutsenko
,
A. A.
, “
Analytical Formulation of Three-Dimensional Dynamic Homogenization for Periodic Elastic Systems
,”
Proc. R. Soc. London, Ser. A
,
468
, pp.
1629
1651
.10.1098/rspa.2011.0698
18.
Srivastava
,
A.
, and
Nemat-Nasser
,
S.
,
2012
, “
Overall Dynamic Properties of Three-Dimensional Periodic Elastic Composites
,”
Proc. R. Soc. London, Ser. A
,
268
, pp.
269
287
.10.1098/rspa.2011.0440
19.
Willis
,
J. R.
,
2012
, “
Effective Constitutive Relations for Waves in Composites and Metamaterials
,”
Proc. R. Soc. London, Ser. A
,
467
, pp.
1865
1879
.10.1098/rspa.2010.0620
20.
Wolfe
,
J. P.
,
1998
,
Imaging Phonons
,
Cambridge University
,
Cambridge, UK
.
21.
Hussein
,
M. I.
,
2009
, “
Theory of Damped Bloch Waves in Elastic Media
,”
Phys. Rev. B
,
80
, p.
212301
.10.1103/PhysRevB.80.212301
22.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2010
, “
Band Structure of Phononic Crystals With General Damping
,”
J. Appl. Phys.
,
108
(
9
), p.
093506
.10.1063/1.3498806
23.
Moiseyenko
,
R. P.
, and
Laude
,
V.
,
2011
, “
Material Loss Influence on the Complex Band Structure and Group Velocity in Phononic Crystals
,”
Phys. Rev. B
,
83
, p.
064301
.10.1103/PhysRevB.83.064301
24.
Farzbod
,
F.
, and
Leamy
,
M. J.
,
2011
, “
Analysis of Bloch's Method in Structures With Energy Dissipation
,”
ASME J. Vibr. Acoust.
,
133
, p.
051010
.10.1115/1.4003943
25.
Bornert
,
M.
,
Bretheau
,
T.
, and
Gilormini
,
P.
,
2001
,
Homogénéisation en Mécanique des Matériaux 1
,
Hermes Science Europe
, Stanmore, UK.
26.
Odegard
,
G.
,
2004
, “
Constitutive Modeling of Piezoelectric Polymer Composites
,”
Acta Mater.
,
52
(
18
), pp.
5315
5330
.10.1016/j.actamat.2004.07.037
27.
Nayfeh
,
A. H.
,
1995
,
Wave Propagation in Layered Anisotropic Media With Applications to Composites
,
North Holland-Elsevier Science
,
Amsterdam
.
28.
Wang
,
L.
, and
Ryne
,
K. G.
,
2007
, “
Existence of Extraordinary Zero-Curvature Slowness Curve in Anisotropic Elastic Media
,”
J. Acoust. Soc. Am.
,
122
(
4
), pp.
1873
1875
.10.1121/1.2770546
29.
Allaire
,
G.
, and
Congas
,
C.
,
1998
, “
Bloch Waves Homogenization and Spectral Asymptotic Analysis
,”
J. Math. Pures Appl.
,
77
, pp.
153
208
.
30.
Ichchou
,
M. N.
,
Akrout
,
S.
, and
Mencik
,
J.
,
2007
, “
Guided Waves Group and Energy Velocities Via Finite Elements
,”
J. Sound Vib.
,
305
(
4–5
), pp.
931
944
.10.1016/j.jsv.2007.05.007
31.
Mencik
,
J.
, and
Ichchou
,
M.
,
2005
, “
Multi-Mode Propagation and Diffusion in Structures Through Finite Elements
,”
Eur. J. Mech. A/Solids
,
24
(
5
), pp.
877
898
.10.1016/j.euromechsol.2005.05.004
32.
Houillon
,
L.
,
Ichchou
,
M.
, and
Jezequel
,
L.
,
2005
, “
Wave Motion in Thin-Walled Structures
,”
J. Sound Vib.
,
281
(
3–5
), pp.
483
507
.10.1016/j.jsv.2004.01.020
33.
Collet
,
M.
,
Ouisse
,
M.
,
Ruzzene
,
M.
, and
Ichchou
,
M.
,
2011
, “
A Floquet-Bloch Decomposition of the Elastodynamical Equations: Application to Bi-dimensional Wave's Dispersion Computation of Damped Mechanical System
,”
Int. J. Solids Struct.
,
48
, pp.
2837
2848
.10.1016/j.ijsolstr.2011.06.002
34.
Collet
,
M.
,
Cunefare
,
K.
, and
Ichchou
,
N.
,
2009
, “
Wave Motion Optimization in Periodically Distributed Shunted Piezocomposite Beam Structures
,”
J. Intell. Mater. Syst. Struct.
,
20
(
7
), pp.
787
808
.10.1177/1045389X08097902
35.
Gavrić
,,
L.
,
1995
, “
Computation of Propagative Waves in Free Rail Using a Finite Element Technique
,”
J. Sound Vib.
,
185
, pp.
531
543
.10.1006/jsvi.1995.0398
36.
Maysenhölder
,
W.
,
1994
,
Körperschall-energie Grundlagen zur Berechnung von Energiedichten und Intensitäten
,
Wissenschaftliche Verlagsgesellschaft
,
Stuttgart
, Germany.
37.
Berthelot
,
J.-M.
,
Assarar
,
M.
,
Sefrani
,
Y.
, and
Mahi
,
A. E.
,
2008
, “
Damping Analysis of Composite Materials and Structures
,”
Compos. Struct.
,
85
(
3
), pp.
189
204
.10.1016/j.compstruct.2007.10.024
38.
Lehoucq
,
R.
,
Sorensen
,
D.
, and
Yang
,
C.
,
1998
,
ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods
,
SIAM
, Philadelphia, PA.
39.
Schenk
,
O.
, and
Gärtner
,
K.
,
2004
, “
Solving Unsymmetric Sparse Systems of Linear Equations With PARDISO
,”
FGCS, Future Gener. Comput. Syst.
,
20
(
3
), pp.
475
487
.10.1016/j.future.2003.07.011
40.
Scarpa
,
F.
,
Panayiotou
,
P.
, and
Tomlinson
,
G.
,
2000
, “
Numerical and Experimental Uniaxial Loading on In-Plane Auxetic Honeycombs
,”
J. Strain Anal. Eng. Des.
,
35
(
5
), pp.
383
388
.10.1243/0309324001514152
41.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. London, Ser. A
,
382
(
1782
), pp.
43
59
.10.1098/rspa.1982.0088
You do not currently have access to this content.