An analytical method is derived for the vibration analysis of doubly curved shallow shells with arbitrary elastic supports alone its edges, a class of problems which are rarely attempted in the literature. Under this framework, all the classical homogeneous boundary conditions for both in-plane and out-of-plane displacements can be universally treated as the special cases when the stiffness for each of restraining springs is equal to either zero or infinity. Regardless of the boundary conditions, the displacement functions are invariably expanded as an improved trigonometric series which converges uniformly and polynomially over the entire solution domain. All the unknown expansion coefficients are treated as the generalized coordinates and solved using the Rayleigh–Ritz technique. Unlike most of the existing solution techniques, the current method offers a unified solution to a wide spectrum of shell problems involving, such as different boundary conditions, varying material and geometric properties with no need of modifying or adapting the solution schemes and implementing procedures. A numerical example is presented to demonstrate the accuracy and reliability of the current method.

References

References
1.
Leissa
,
A. W.
,
1973
,
Vibration of Shells
,
NASA
,
Washington, DC
.
2.
Liew
,
K. M.
,
Lim
,
C. W.
, and
Kitipornchai
,
S.
,
1997
, “
Vibration of Shallow Shells: A Review With Bibliography
,”
ASME Appl. Mech. Rev.
,
50
(
8
), pp.
431
444
.10.1115/1.3101731
3.
Qatu
,
M. S.
,
2002
, “
Recent Research Advances in the Dynamic Behavior of Shells: 1989–2000, Part 2: Homogeneous Shells
,”
ASME Appl. Mech. Rev.
,
55
(
5
), pp.
415
434
.10.1115/1.1483078
4.
Petyt
,
M.
, and
Deb Nath
,
J. M.
,
1970
, “
Vibration Analysis of Singly Curved Rectangular Plates
,”
J. Sound Vib.
,
13
(
4
), pp.
485
497
.10.1016/S0022-460X(70)80053-0
5.
Petyt
,
M.
,
1971
, “
Vibration of Curved Plates
,”
J. Sound Vib.
,
15
(
3
), pp.
381
395
.10.1016/0022-460X(71)90432-9
6.
Elishakoff
,
I.
, and
Wiener
,
F.
,
1976
, “
Vibration of an Open Shallow Cylindrical Shell
,”
J. Sound Vib.
,
44
(
3
), pp.
379
392
.10.1016/0022-460X(76)90509-5
7.
Walker
,
K. P.
,
1978
, “
Vibrations of Cambered Helicoidal Fan Blades
,”
J. Sound Vib.
,
59
(
1
), pp.
35
37
.10.1016/0022-460X(78)90476-5
8.
Leissa
,
A. W.
,
Lee
,
J. K.
, and
Wang
,
A. J.
,
1983
, “
Vibration of Cantilevered Doubly-Curved Shallow Shells
,”
Int. J. Solids Struct.
,
19
(
5
), pp.
411
424
.10.1016/0020-7683(83)90052-5
9.
Leissa
,
A. W.
, and
Narita
,
Y.
,
1984
, “
Vibrations of Completely Free Shallow Shells of Rectangular Planform
,”
J. Sound Vib.
,
96
(
2
), pp.
207
218
.10.1016/0022-460X(84)90579-0
10.
Qatu
,
M. S.
, and
Asadi
,
E.
,
2012
, “
Vibration of Doubly Curved Shallow Shells With Arbitrary Boundaries
,”
Appl. Acoust.
,
73
(
1
), pp.
21
27
.10.1016/j.apacoust.2011.06.013
11.
Qatu
,
M. S.
,
2011
, “
Effect of Inplane Edge Constraints on Natural Frequencies of Simply Supported Doubly Curved Shallow Shells
,”
Thin Wall. Struct.
,
49
(
7
), pp.
797
803
.10.1016/j.tws.2011.01.001
12.
Liew
,
K. M.
, and
Lim
,
C. W.
,
1994
, “
Vibratory Characteristics of Cantilevered Rectangular Shallow Shells of Variable Thickness
,”
AIAA J.
,
32
(
2
), pp.
387
396
.10.2514/3.59996
13.
Liew
,
K. M.
, and
Lim
,
C. W.
,
1995
, “
Vibratory Behavior of Doubly Curved Shallow Shells of Curvilinear Planform
,”
ASCE J. Eng. Mech.
,
121
(
12
), pp.
1227
1283
.10.1061/(ASCE)0733-9399(1995)121:12(1277)
14.
Cheung
,
Y. K.
,
Li
,
W. Y.
, and
Tham
,
L.G.
,
1989
, “
Free Vibration Analysis of Singly Curved Shell by Spline Finite Strip Method
,”
J. Sound Vib.
,
128
(
3
), pp.
411
422
.10.1016/0022-460X(89)90783-9
15.
Choi
,
S. T.
,
Chou
,
Y. T.
,
2003
, “
Vibration Analysis of Non-Circular Curved Panels by the Differential Quadrature Method
,”
J. Sound Vib.
,
259
(
3
), pp.
525
539
.10.1006/jsvi.2002.5335
16.
Amabili
,
M.
, and
Garziera
,
R.
,
2000
, “
Vibrations of Circular Cylindrical Shells With Nonuniform Constraints, Elastic Bed and Added Mass; Part 1: Empty and Fluid-Filled Shells
,”
J. Fluid. Struct.
,
14
(
5
), pp.
669
690
.10.1006/jfls.2000.0288
17.
Li
,
W. L.
,
2000
, “
Free Vibrations of Beams With General Boundary Conditions
,”
J. Sound Vib.
,
237
(
4
), pp.
709
725
.10.1006/jsvi.2000.3150
18.
Li
,
W. L.
,
Bonilha
,
M. W.
, and
Xiao
,
J.
,
2007
, “
Vibrations and Power Flows in a Coupled Beam System
,”
ASME J. Vib. Acoust.
,
129
(
5
), pp.
616
622
.10.1115/1.2775518
19.
Du
,
J. T.
,
Liu
,
Z. G.
,
Li
,
W. L.
,
Zhang
,
X. F.
, and
Li
,
W. Y.
,
2010
, “
Free In-Plane Vibration Analysis of Rectangular Plates With Elastically Point-Supported Edges
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031002
.10.1115/1.4000777
20.
Zhang
,
X.
, and
Li
,
W. L.
,
2009
, “
Vibrations of Rectangular Plates With Arbitrary Non-Uniform Elastic Edge Restraints
,”
J. Sound Vib.
,
326
(
1
), pp.
221
234
.10.1016/j.jsv.2009.04.021
21.
Li
,
W. L.
, “
Vibrations of Circular Cylindrical Shells With General Elastic Boundary Restraints
,”
ASME J. Vib. Acoust.
(in press).
22.
Dai
,
L.
,
Yang
,
T. J.
,
Li
,
W. L.
,
Du
,
J. T.
, and
Jin
,
G. Y.
,
2012
, “
Dynamic Analysis of Circular Cylindrical Shells With General Boundary Condition
,”
ASME J. Vib. Acoust.
,
134
(
4
), p.
041004
.10.1115/1.4005833
23.
Xu
,
H. A.
,
Du
,
J. T.
, and
Li
,
W. L.
,
2010
, “
Vibrations of Rectangular Plates Reinforced by Any Number of Beams of Arbitrary Lengths and Placement Angles
,”
J. Sound Vib.
,
329
(
18
), pp.
3759
3779
.10.1016/j.jsv.2010.03.023
24.
Du
,
J. T.
,
Li
,
W. L.
,
Liu
,
Z. G.
,
Yang
,
T. J.
, and
Jin
,
G. Y.
,
2011
, “
Free Vibration of Two Elastically Coupled Rectangular Plates With Uniform Elastic Boundary Restraints
,”
J. Sound Vib.
,
330
(
4
), pp.
788
804
.10.1016/j.jsv.2010.08.044
You do not currently have access to this content.