The stability and bifurcation of a flexible 3D rotor system are investigated in this paper. The rotor is discretized by 3D elements and reduced by using component mode synthesis. Periodic motions and stability margins are obtained by using the shooting method and path-following technique, and the local stability of the periodic motions is determined by using the Floquet theory. Comparisons indicate that 3D and 1D systems have a general resemblance in the bifurcation characteristics while mass eccentricity and rotating speed are changed. For both systems, the orbit size of the periodic motions has the same order of magnitude, and the vibration response has identical frequency components when typical bifurcations occur. The stress distribution and location of the maximum stress spot are determined by the bending mode of the rotor. The type of 3D element has a slight effect on the stability and bifurcation of the rotor system. Generally, this paper presents a feasible method for analyzing the stability and bifurcation of complex rotors without much structural simplification.

References

References
1.
Lund
,
J. W.
, and
Nelson
,
H. B.
,
1980
, “
Instability Threshold of an Unbalanced Rigid Rotor in Short Journal Bearings
,”
Proceedings of the Second International Conference on Vibration in Rotating Machinery
,
Cambridge, UK
, September 1–4.
2.
Muszynska
,
A.
,
1986
, “
Whirl and Whip-Rotor/Bearing Stability Problems
,”
ASME J. Sound Vib.
,
110
, pp.
443
462
.10.1016/S0022-460X(86)80146-8
3.
Gunter
,
E. J.
,
Humphris
,
R. R.
, and
Springer
,
H.
,
1983
, “
Influence of Unbalance on the Nonlinear Dynamical Response and Stability of Flexible Rotor Bearing System
,”
Proceedings of the Applied Mechanics, Bioengineering, and Fluids Engineering Conference
, Houston, TX, June 20–22, pp.
37
58
.
4.
Myers
,
C. J.
,
1984
, “
Bifurcation Theory Applied to Oil Whirl in Plain Cylindrical Journal Bearings
,”
ASME J. Appl. Mech.
,
51
, pp.
244
250
.10.1115/1.3167607
5.
Sundararajan
,
P.
, and
Noah
,
S. T.
,
1997
, “
Dynamics of Forced Nonlinear Systems Using Shooting/Arclength Continuation Method-Application to Rotor System
,”
ASME J. Vib. Acoust.
,
119
, pp.
9
20
.10.1115/1.2889694
6.
Brancati
,
R.
,
Rocca
,
E.
,
Rosso
,
M.
, and
Rosso
,
R.
,
1995
, “
Journal Orbits and Their Stability for Rigid Unbalanced Rotors
,”
ASME J. Tribol.
,
117
, pp.
709
716
.10.1115/1.2831541
7.
Nataraj
,
C.
, and
Nelson
,
H. D.
,
1989
, “
Periodic Solutions in Rotor Dynamic System With Nonlinear With Nonlinear Supports: A General Approach
,”
ASME J. Vib., Acoust., Stress Reliab. Des.
,
111
, pp.
187
193
.10.1115/1.3269840
8.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Bifurcation Analysis for a Modified Jeffcott Rotor With Bearing Clearance
,”
Nonlinear Dyn.
,
1
, pp.
221
241
.10.1007/BF01858295
9.
Choi
,
S. K.
, and
Noah
,
S. T.
,
1992
, “
Response and Stability Analysis of Piecewise-Linear Oscillators Under Multi-Forcing Frequencies
,”
Nonlinear Dyn.
,
3
, pp.
105
121
.10.1007/BF00118988
10.
Ehrich
,
F. F.
,
1988
, “
High Order Subharmonic Response of High Speed Rotors in Bearing Clearance
,”
ASME J. Vib., Acoust., Stress Reliab. Des.
,
110
, pp.
9
16
.10.1115/1.3269488
11.
Choi
,
S. K.
, and
Noah
,
S. T.
,
1994
, “
Mode-Locking and Chaos in a Jeffcott Rotor With Bearing Clearance
,”
ASME J. Appl. Mech.
,
61
, pp.
131
138
.10.1115/1.2901387
12.
Chu
,
F.
, and
Zhang
,
Z.
,
1998
, “
Bifurcation and Chaos in a Rub-Impact Jeffcott Rotor System
,”
J. Sound Vib.
,
210
(
1
), pp.
1
18
.10.1006/jsvi.1997.1283
13.
Nelson
,
H. D.
,
1980
, “
A Finite Rotating Shaft Element Using Timoshenko Beam Theory
,”
ASME J. Mech. Des.
,
102
, pp.
793
803
.10.1115/1.3254824
14.
Zheng
,
T.
, and
Hasebe
,
N.
,
2000
, “
Nonlinear Dynamic Behaviors of a Complex Rotor-Bearing System
,”
ASME J. Appl. Mech.
,
67
, pp.
485
495
.10.1115/1.1286208
15.
Ho
,
Y. S.
,
Liu
,
H.
, and
Yu
,
L.
,
2003
, “
Effect of Thrust Magnetic Bearing on Stability and Bifurcation of a Flexible Rotor Active Magnetic Bearing System
,”
ASME J. Vib. Acoust.
,
125
, pp.
307
316
.10.1115/1.1570448
16.
Van De Vorst
,
E. L. B.
,
Fey
,
R. H. B.
,
De
Kraker
,
A.
, and
Van Campen
,
D. H.
,
1996
, “
Steady-State Behaviour of Flexible Rotor-Dynamic Systems With Oil Journal Bearings
,”
Nonlinear Dyn.
,
11
, pp.
295
313
.10.1007/BF00120722
17.
Nelson
,
H. D.
,
Mechan
,
W. L.
,
Fleming
,
D. P.
, and
Kascak
A. F.
,
1983
, “
Nonlinear Analysis of Rotor Bearing System Using Component Mode Synthesis
,” ASME Paper No. 83-GT-303.
18.
Shanmugam
,
A.
, and
Padmanabhan
,
C.
,
2006
, “
A Fixed-Free Interface Component Mode Synthesis Method for Rotordynamic Analysis
,”
J. Sound Vib.
,
297
(
3–5
), pp.
664
679
.10.1016/j.jsv.2006.04.011
19.
Adams
,
M. L.
,
1980
, “
Non-Linear Dynamics of Flexible Multi-Bearing Rotors
,”
J. Sound Vib.
,
71
, pp.
129
144
.10.1016/0022-460X(80)90413-7
20.
Padovan
,
J.
,
Adams
,
M.
,
Fertis
,
D.
,
Zeid
, I
.
, and
Lam
,
P.
,
1984
, “
Nonlinear Transient Finite Element Analysis of Rotor-Bearing-Stator Systems
,”
Comput. Struct.
,
18
, pp.
629
639
.10.1016/0045-7949(84)90008-7
21.
Fey
,
R. H. B.
,
Van Campen
,
D. H.
, and
de Kraker
,
A.
,
1996
, “
Long Term Structural Dynamics of Mechanical Systems With Local Nonlinearities
,”
J. Vib. Acoust.
,
118
, pp.
147
153
.10.1115/1.2889642
22.
Iooss
,
G.
, and
Joseph
,
D. D.
,
1980
,
Elementary Stability and Bifurcation Theory
,
Springer-Verlag
,
New York
.
23.
Parker
,
T. S.
, and
Chua
,
L. O.
,
1989
,
Practical Numerical Algorithms for Chaotic System
,
Springer-Verlag
,
New York
.
24.
Seydel
,
R.
,
1988
,
From Equilibrium to Chaos, Practical Bifurcation and Stability Analysis
,
Elsevier
,
New York
.
25.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
Geradin
,
M.
, and
Kill
,
N.
,
1984
, “
A New Approach to Finite Element Modelling of Flexible Rotors
,”
Eng. Comput.
,
1
, pp.
52
64
.10.1108/eb023560
27.
Wang
,
X.
, and
Yamaguchi
,
A.
,
2002
, “
Characteristics of Hydrostatic Bearing/Seal Parts for Water Hydraulic Pumps and Motors—Part 1: Experiment and Theory
,”
Tribol. Int.
,
35
, pp.
425
433
.10.1016/S0301-679X(02)00023-3
28.
Christonpherson
,
D. G.
,
1941
, “
A New Mathematical Method for the Solution of Film Lubrication Problems
,”
Proc. Inst. Mech. Eng.
,
146
, pp.
126
135
.10.1243/PIME_PROC_1941_146_027_02
29.
Pinkus
,
O.
, and
Sternlicit
,
B.
,
1961
,
Theory of Hydrodynamic Lubrication
,
McGraw-Hill
,
New York
.
30.
Seon
,
M. H.
,
Benaroya
,
H.
, and
Wei
,
T.
,
1999
, “
Dynamics of Transversely Vibration Beams Using for Engineering Theories
,”
J. Sound Vib.
,
225
, pp.
935
988
.10.1006/jsvi.1999.2257
You do not currently have access to this content.