Periodic impulses in vibration signals and its repeating frequency are the key indicators for diagnosing the local damage of rolling element bearings. A new method based on ensemble empirical mode decomposition (EEMD) and the Teager energy operator is proposed to extract the characteristic frequency of bearing fault. The signal is firstly decomposed into monocomponents by means of EEMD to satisfy the monocomponent requirement by the Teager energy operator. Then, the intrinsic mode function (IMF) of interest is selected according to its correlation with the original signal and its kurtosis. Next, the Teager energy operator is applied to the selected IMF to detect fault-induced impulses. Finally, Fourier transform is applied to the obtained Teager energy series to identify the repeating frequency of fault-induced periodic impulses and thereby to diagnose bearing faults. The principle of the method is illustrated by the analyses of simulated bearing vibration signals. Its effectiveness in extracting the characteristic frequency of bearing faults, and especially its performance in identifying the symptoms of weak and compound faults, are validated by the experimental signal analyses of both seeded fault experiments and a run-to-failure test. Comparison studies show its better performance than, or complements to, the traditional spectral analysis and the squared envelope spectral analysis methods.

References

1.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Model for The Vibration Produced by a Single Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
96
(
1
), pp.
69
82
.10.1016/0022-460X(84)90595-9
2.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1985
, “
The Vibration Produced by Multiple Point Defect in a Rolling Element Bearing
,”
J. Sound Vib.
,
98
(
2
), pp.
263
273
.10.1016/0022-460X(85)90390-6
3.
McFadden
,
P. D.
, and
Smith
,
J. D.
,
1984
, “
Vibration Monitoring of Rolling Element Bearings by the High Frequency Resonance Technique—A Review
,”
Tribol. Int.
,
17
(
1
), pp.
3
10
.10.1016/0301-679X(84)90076-8
4.
Feng
,
Z.
,
Liu
,
L.
, and
Zhang
,
W.
,
2008
, “
Fault Diagnosis of Rolling Element Bearings Based on Wavelet Time–Frequency Frame Decomposition
,”
J. Vib. Shock
,
27
(
2
), pp.
110
114
(in Chinese).
5.
Kaiser
,
J. F.
,
1990
, “
On a Simple Algorithm to Calculate the ‘Energy’ of a Signal
,” Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (
ICASSP-90
), Albuquerque, NM, April 3–6, Vol.
1
, pp.
381
384
.10.1109/ICASSP.1990.115702
6.
Kaiser
,
J. F.
,
1990
, “
On Teager's Energy Algorithm and Its Generalization to Continuous Signals
,” Proceedings of 4th IEEE Digital Signal Processing Workshop, Palz, NY, September 16–19.
7.
Kaiser
,
J. F.
,
1993
, “
Some Useful Properties of Teager's Energy Operators
,” Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (
ICASSP-93
), Minneapolis, MN, April 27–30, Vol.
3
, pp.
149
152
.10.1109/ICASSP.1993.319457
8.
Maragos
,
P.
,
Kaiser
,
J. F.
, and
Quatieri
,
T. F.
,
1993
, “
On Amplitude and Frequency Demodulation Using Energy Operators
,”
IEEE Trans. Signal Process.
,
41
(
4
), pp.
1532
1550
.10.1109/78.212729
9.
Maragos
,
P.
,
Kaiser
,
J. F.
, and
Quatieri
,
T. F.
,
1993
, “
Energy Separation in Signal Modulations With Application to Speech Analysis
,”
IEEE Trans. Signal Process.
,
41
(
10
), pp.
3024
3051
.10.1109/78.277799
10.
Bovik
,
A. C.
,
Maragos
,
P.
, and
Quatieri
,
T. F.
,
1993
, “
AM-FM Energy Detection and Separation in Noise Using Multiband Energy Operators
,”
IEEE Trans. Signal Process.
,
41
(
12
), pp.
3245
3265
.10.1109/78.258071
11.
Potamianos
,
A.
, and
Maragos
,
P.
,
1994
, “
A Comparison of the Energy Operator and Hilbert Transform Approaches for Signal and Speech Demodulation
,”
Signal Process.
,
37
(
1
), pp.
95
120
.10.1016/0165-1684(94)90169-4
12.
Cheng
,
J.
,
Yu
,
D.
, and
Yang
,
Y.
,
2007
, “
The Application of Energy Operator Demodulation Approach Based on EMD in Machinery Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
21
(
2
), pp.
668
677
.10.1016/j.ymssp.2005.09.005
13.
Bassiuny
,
A. M.
, and
Li
,
X.
,
2007
, “
Flute Breakage Detection During End Milling Using Hilbert-Huang Transform and Smoothed Nonlinear Energy Operator
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
1011
1020
.10.1016/j.ijmachtools.2006.06.016
14.
Li
,
H.
,
Zheng
,
H.
, and
Tang
,
L.
,
2010
, “
Gear Fault Detection Based on Teager-Huang Transform
,”
Int. J. Rotating Mach.
,
2010
, p.
502064
.10.1155/2010/502064
15.
Cexus
,
J. C.
, and
Boudraa
,
A. O.
,
2004
, “
Teager-Huang Analysis Applied to Sonar Target Recognition
,”
Int. J. Signal Process.
,
1
(
1
),
23
27
.
16.
Liang
,
M.
, and
Soltani Bozchalooi
,
I.
,
2010
, “
An Energy Operator Approach to Joint Application of Amplitude and Frequency-Demodulations for Bearing Fault Detection
,”
Mech. Syst. Signal Process.
,
24
(
5
), pp.
1473
1494
.10.1016/j.ymssp.2009.12.007
17.
Soltani Bozchalooi
,
I.
, and
Liang
,
M.
,
2010
, “
Teager Energy Operator for Multi-Modulation Extraction and Its Application for Gearbox Fault Detection
,”
Smart Mater. Struct.
,
19
, p.
075008
.10.1088/0964-1726/19/7/075008
18.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
,
454
, pp.
903
995
.10.1098/rspa.1998.0193
19.
Wu
,
Z.
, and
Huang
,
N. E.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adapt. Data Anal.
,
1
(
1
), pp.
1
41
.10.1142/S1793536909000047
20.
Wu
,
Z.
, and
Huang
,
N. E.
,
2004
, “
A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method
,”
Proc. R. Soc. London, Ser. A
,
460
, pp.
1597
1611
.10.1098/rspa.2003.1221
21.
Flandrin
,
P.
,
Rilling
,
G.
, and
Goncalves
,
P.
,
2004
, “
Empirical Mode Decomposition as a Filter Bank
,”
IEEE Signal Process. Lett.
,
11
(
2
), pp.
112
114
.10.1109/LSP.2003.821662
22.
Ho
,
D.
, and
Randall
,
R. B.
,
2000
, “
Optimisation of Bearing Diagnostic Techniques Using Simulated and Actual Bearing Fault Signals
,”
Mech. Syst. Signal Process.
,
14
(
5
), pp.
763
788
.10.1006/mssp.2000.1304
23.
Sawalhi
,
N.
, and
Randall
,
R. B.
,
2011
, “
Signal Pre-Whitening for Fault Detection Enhancement and Surveillance of Rolling Element Bearings
,”
The Eighth International Conference on Condition Monitoring and Machinery Failure Prevention Technologies
,
Cardiff, Wales, UK
, June 19–22.
24.
Randall
,
R. B.
, and
Antoni
,
J.
,
2011
, “
Rolling Element Bearing Diagnostics—A Tutorial
,”
Mech. Syst. Signal Process.
,
25
, pp.
485
520
.10.1016/j.ymssp.2010.07.017
25.
Qiu
,
H.
,
Lee
,
J.
,
Lin
,
J.
, and
Yu
,
G.
,
2006
, “
Wavelet Filter-Based Weak Signature Detection Method and Its Application on Rolling Element Bearing Prognostics
,”
J. Sound Vib.
,
289
, pp.
1066
1090
.10.1016/j.jsv.2005.03.007
26.
Feng
,
Z.
,
Chu
,
F.
, and
Zuo
,
M. J.
,
2011
, “
Time-Frequency Analysis of Time-Varying Modulated Signals Based on Improved Energy Separation by Iterative Generalized Demodulation
,”
J. Sound Vib.
,
30
, pp.
1225
1243
.10.1016/j.jsv.2010.09.030
27.
Feng
,
Z.
,
Wang
,
T.
,
Zuo
,
M. J.
,
Chu
,
F.
, and
Yan
,
S.
,
2011
, “
Teager Energy Spectrum for Fault Diagnosis of Rolling Element Bearings
,”
J. Phys.: Conf. Ser.
,
305
(
1
), p.
012129
.10.1088/1742-6596/305/1/012129
You do not currently have access to this content.