A method of complex orthogonal decomposition is summarized for the time-domain, and then formulated and justified for application in the frequency-domain. The method is then applied to the extraction of modes from simulation data of sampled multimodal traveling waves for estimating wave parameters in one-dimensional continua. The decomposition is first performed on a transient nondispersive pulse. Complex wave modes are then extracted from a two-harmonic simulation of a dispersive medium. The wave frequencies and wave numbers are obtained by looking at the whirl of the complex modal coordinate, and the complex modal function, respectively, in the complex plane. From the frequencies and wave numbers, the wave speeds are then estimated, as well as the group velocity associated with the two waves. The decomposition is finally applied to a simulation of the traveling waves produced by a Gaussian initial displacement profile in an Euler–Bernoulli beam. While such a disturbance produces a continuous spectrum of wave components, the sampling conditions limit the range of modal components (i.e., mode shapes and modal coordinates) to be extracted. Within this working range, the wave numbers and frequencies are obtained from the extraction, and compared to theory. Modal signal energies are also quantified. The results are robust to random noise.

References

References
1.
Feeny
,
B. F.
,
2008
, “
A Complex Orthogonal Decomposition for Wave Motion Analysis
J. Sound Vib.
,
310
(
1–2
), pp.
77
90
.
2.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flow
,”
Atmospheric Turbulence and Radio Wave Propagation
,
A.M.
Yaglom
and
V.I.
Tatarski
, eds.,
Nauka
,
Moscow
, pp.
166
178
.
3.
Lumley
,
J. L.
,
1970
,
Stochastic Tools in Turbulence
,
Academic
,
New York
.
4.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
25
, pp.
539
575
.
5.
Liang
,
Y. C.
,
Lee
,
H. P.
,
Lim
,
S. P.
Lin
,
W. Z.
,
Lee
,
K. H.
, and
Wu
,
C. G.
,
2002
, “
Proper Orthogonal Decomposition and its Applications—Part 1: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.
6.
Chelidze
,
D.
, and
Zhou
,
W.
,
2006
, “
Smooth Orthogonal Decomposition-Based Vibration Mode Identification
,”
J. Sound Vib.
,
292
, pp.
461
473
.
7.
Feeny
,
B. F.
, and
Farooq
,
U.
,
2008
, “
A Nonsymmetric State-Variable Decomposition for Modal Analysis
,”
J. Sound Vib.
,
310
(
4–5
), pp.
792
800
.
8.
Georgiou
,
I. T.
, and
Papadopoulos
,
C. I.
,
2006
. “
Developing Pod Over the Complex Plane to Form a Data Processing Tool for Finite Element Simulations of Steady State Structural Dynamics
,” International Mechanical Engineering Congress and Exposition, Chicago, November 5–10,
ASME
Paper No. IMECE2006-15359 (on DVD-ROM).
9.
Johnson
,
R. L.
,
1992
, “
An Experimental Investigation of Three Eigen DF Techniques
,”
IEEE Trans. Aerosp. Electron. Syst.
,
28
(
3
), pp.
852
860
.
10.
Pierre
,
J. W.
, and
Kaveh
,
M.
,
1995
, “
Experimental Evaluation of High-Resolution Direction-Finding Algorithms Using a Calibrated Sensor Array Testbed
,”
Digit. Signal Process.
,
5
(
4
), pp.
243
254
.
11.
Kangas
,
A.
,
Stoica
,
P.
, and
Soderstrom
,
T.
,
1994
, “
Finite Sample and Modelling Error Effects on ESPRIT and MUSIC Direction Estimators
,”
IEE Proc., Radar Sonar Navig.
,
141
(
5
), pp.
249
255
.
12.
Rajan
, S. D., and
Bhatta
, S. D.,
1993
, “
Evaluation of High-Resolution Frequency Estimation Methods for Determining Frequencies of Eigenmodes in Shallow Water Acoustic Field,
J. Acoust. Soc. Am.
,
93
(
1
), pp.
378
389
.
13.
Newland
,
D. E.
,
1993
,
An Introduction to Random Vibrations, Spectral and Wavelet Analysis
,
3rd ed.
,
Longman Scientific and Technical
,
Singapore
.
14.
Mallat
,
S.G.
,
1989
, “
A Theory for Multiresolution Signal Decomposition—The Wavelet Representation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
11
(
7
), pp.
674
693
.
15.
Lamarque
,
C. H.
,
Pernot
,
S.
, and
Cuer
,
A.
,
2000
, “
Damping Identification in Multi-Degree-of-Freedom Systems Via a Wavelet-Logarithmic Decrement—Part 1: Theory
,”
J. Sound Vib.
,
235
(
3
), pp.
361
374
.
16.
Argoul
,
P.
, and
Le
,
T. P.
,
2003
, “
Instantaneous Indicators of Structural Behaviour Based on the Continuous Cauchy Wavelet Analysis
,”
Mech. Syst. Signal Process.
,
17
(
1
), pp.
243
250
.
17.
Coca
,
D.
, and
Billings
,
S. A.
,
1997
, “
Continuous-Time System Identification for Linear and Nonlinear Systems Using Wavelet Decompositions
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
7
(
1
), pp.
87
96
.
18.
Ip
,
K. H.
,
Tse
,
P. W.
, and
Tam
,
H. Y.
,
2004
, “
Extraction of Patch-Induced Lamb Waves Using a Wavelet Transform
,”
Smart Mater. Struct.
,
13
(
4
), pp.
861
872
.
19.
di Scalea
,
F. L.
, and
McNamara
,
J.
,
2004
, “
Wavelet Transform for Characterizing Longitudinal and Lateral Transient Vibrations of Railroad Tracks
,”
Res. Nondestruct. Eval.
,
15
(
2
), pp.
87
98
.
20.
Roueff
,
A.
,
Chanussot
,
J.
,
Mars
,
J. I.
, and
Nguyen
,
M. Q.
,
2004
, “
Unsupervised Separation of Seismic Waves Using the Watershed Algorithm on Time-Scale Images
,”
Geophys. Prospect.
,
52
(
4
), pp.
287
300
.
21.
Lee
,
H. S.
, and
Kwon
,
S. H.
,
2003
, “
Wave Profile Measurement by Wavelet Transform
,”
Ocean Eng.
,
30
(
18
), pp.
2313
2328
.
22.
Huang
,
M. C.
,
2004
, “
Wave Parameters and Functions in Wavelet Analysis
,”
Ocean Eng.
,
31
(
1
), pp.
111
125
.
23.
Onsay
,
T.
, and
Haddow
,
A. G.
,
1994
, “
Wavelet Transform Analysis of Transient Wave-Propagation in a Dispersive Medium
,”
J. Acoust. Soc. Am.
,
95
(
3
), pp.
1441
1449
.
24.
McDaniel
,
J. G.
, and
Shepard
,
W. S. Jr.
,
2000
, “
Estimation of Structural Wave Numbers From Spatially Sparse Response Measurements
,”
J. Acoust. Soc. Am.
108
(
4
), pp.
1674
1682
.
25.
Grosh
,
K.
, and
Williams
,
E. G.
,
1993
, “
Complex Wave-Number Decomposition of Structural Vibration
,”
J. Acoust. Soc. Am.
,
93
(
2
), pp.
836
848
.
26.
Hull
,
A. J.
, and
Hurdis
,
D. A.
,
2003
, “
A Parameter Estimation Method for the Exural Wave Properties of a Beam
,”
J. Sound Vib.
,
262
(
2
), pp.
187
197
.
27.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
,
1989
,
Discrete-Time Signal Processing
,
Prentice Hall
,
Englewood Cliffs, NJ
.
28.
Mortensen
,
R. E.
,
1987
,
Random Signals and Systems
,
Wiley
,
New York
.
29.
Feeny
,
B. F.
,
2010
, “
Complex Modal Extraction for Estimating Wave Parameters in One-Dimensional Media
,” ASME International Design Engineering Technical Conferences, Special
Conference
on Vibration and Noise, Montreal, Canada, August 15–18, ASME Paper No. DETC2010-28919 (CD–ROM).
30.
Graff
,
K.F.
,
1975
,
Wave Motion in Elastic Solids
,
Ohio State University Press
, Columbus, OH.
31.
Feeny
,
B. F.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
(
4
), pp.
607
616
.
32.
Feeny
,
B. F.
,
Sternberg
,
P. W.
,
Cronin
,
C.J.
, and
Coppola
,
C. A.
,
2012
, “
Complex Modal Decomposition Applied to Nematode Posturing
,”
ASME J. Comput. Nonlinear Dyn.
(accepted).
This content is only available via PDF.
You do not currently have access to this content.