In many small-scale devices, the materials employed are functionalized (doped) with microscale and/or nanoscale particles, in order to deliver desired overall dielectric properties. In this work, we develop a reduced-order lumped-mass model to characterize the dynamic response of a material possessing a microstructure that is comprised of an electromagnetically-neutral binder with embedded electromagnetically-sensitive (charged) particles. In certain industrial applications, such materials may encounter external electrical loading that can be highly oscillatory. Therefore, it is possible for the forcing frequencies to activate the inherent resonant frequencies of these micro- and nanostructures. In order to extract qualitative information, this paper first analytically investigates the mechanical and electromagnetic (cyclotronic) contributions to the dynamic response for a single particle, and then quantitatively investigates the response of a model problem consisting of a coupled multiparticle periodic array, via numerical simulation, using an implicit temporally-adaptive trapezoidal time-stepping scheme. For the model problem, numerical studies are conducted to observe the cyclotronically-dominated resonant frequency and associated beat phenomena, which arises due to the presence of mechanical and electromagnetic harmonics in the material system.

References

References
1.
Maxwell
,
J. C.
,
1867
, “
On the Dynamical Theory of Gases
,”
Philos. Trans. R. Soc. London
157
, pp.
49
88
.10.1098/rstl.1867.0004
2.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
,
3rd. ed.
,
Clarendon
,
Oxford, UK
.
3.
Rayleigh
,
J. W.
,
1892
, “
On the Influence of Obstacles Arranged in Rectangular Order Upon Properties of a Medium
,”
Philos. Mag.
,
32
, pp.
481
491
.
4.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic Properties
,
Springer-Verlag
,
New York
.
5.
Jikov
,
V. V.
,
Kozlov
,
S. M.
, and
Olenik
,
O. A.
,
1994
,
Homogenization of Differential Operators and Integral Functionals
,
Springer-Verlag
,
New York
.
6.
Hashin
,
Z.
,
1983
, “
Analysis of Composite Materials: A Survey
,”
ASME J. Appl. Mech.
,
50
, pp.
481
505
.10.1115/1.3167081
7.
Markov
,
K. Z.
,
2000
, “
Elementary Micromechanics of Heterogeneous Media
,”
Heterogeneous Media: Micromechanics Modeling Methods and Simulations
,
K. Z.
Markov
and
L.
Preziozi
, eds.,
Birkhauser
,
Boston
, pp.
1162
.
8.
Mura
,
T.
,
1993
,
Micromechanics of Defects in Solids
,
2nd ed.
,
Kluwer
,
Dordrecht, Germany
.
9.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
1999
,
Micromechanics: Overall Properties of Heterogeneous Solids
,
2nd ed.
,
Elsevier
,
Amsterdam
.
10.
Huet
,
C.
,
1982
, “
Universal Conditions for Assimilation of a Heterogeneous Material to an Effective Medium
,”
Mech. Res. Commun.
,
9
(
3
):
165
170
.10.1016/0093-6413(82)90048-9
11.
Huet
,
C.
,
1984
, “
On the Definition and Experimental Determination of Effective Constitutive Equations for Heterogeneous Materials
,”
Mech. Res. Commun.
,
11
(
3
), pp.
195
200
.10.1016/0093-6413(84)90064-8
12.
Zohdi
,
T. I.
,
2010
, “
On the Dynamics of Charged Electromagnetic Particulate Jets
,”
Arch. Comput. Methods Eng.
,
17
(
2
), pp.
109
135
.10.1007/s11831-010-9044-3
13.
Zohdi
,
T. I.
,
2012
,
Electromagnetic Properties of Multiphase Dielectrics: A Primer on Modeling, Theory and Computation
,
Springer-Verlag
,
New York
.
14.
Ghosh
,
S.
,
2011
,
Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method
,
Taylor & Francis
,
London
.
15.
Ghosh
,
S.
, and
Dimiduk
,
D.
,
2011
,
Computational Methods for Microstructure-Property Relations
,
Springer
New York
.
16.
Rebeiz
,
G. M.
,
Barker
,
N. S.
,
Muldavin
,
J. B.
and
Tan
,
G. L.
,
2004
,
Mechanical Modeling of MEMS Devices: Static Analysis RF MEMS: Theory, Design and Technology
,
G.M.
Rebeiz
, ed.,
Wiley
,
New York
, pp.
21
57
.
17.
Quandt
,
E.
, and
Ludwig
,
A.
,
2000
, “
Magnetorestrictive Actuation in Microsystems
,”
Sens. Actuators
81
, pp.
27
5–280
.
10.1016/S0924-4247(99)00173-9
18.
Grimes
,
C.
,
Ong
,
K.
,
Loiselle
,
K.
,
Stoyanov
,
P.
,
Kouzoudis
,
D.
,
Liu
,
Y.
,
Tong
,
C.
, and
Tefiku
,
F.
,
1999
, “
Magnetoelastic Sensors for Remote Query Environmental Monitoring
,”
Smart Mater. Struct.
,
8
, pp.
639
646
.10.1088/0964-1726/8/5/314
19.
Kouzoudis
,
D.
, and
Grimes
,
C.
,
2000a
, “
The Frequency Response of Magnetoelastic Sensors to Stress and Atmospheric Pressure
,”
Smart Mater. Struct.
,
9
, pp.
885
889
.10.1088/0964-1726/9/6/320
20.
Kouzoudis
,
D.
, and
Grimes
,
C.
,
2000b
, “
Remote Query Fluid Flow Velocity Measurement Using Magnetoelastic Thick Film Sensors
,”
J. Appl. Phys.
,
87
(
9
), pp.
6301
6303
.10.1063/1.372686
21.
Azevedo
,
R. G.
,
Jones
,
D. G.
,
Jog
,
A. V.
,
Jamshidi
,
B.
,
Myers
,
D. R.
,
Chen
,
L.
,
Fu
,
X.A.
,
Mehregany
,
M.
,
Wijesundara
,
M.B.J.
and
Pisano
,
A.P.
,
2007
, “
A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications
,”
IEEE Sens. J.
,
7
(
4
), pp.
568
576
.10.1109/JSEN.2007.891997
22.
Jones
,
D. G.
,
Azevedo
,
R. G.
,
Chan
,
M. W.
,
Pisano
,
A. P.
, and
Wijesundara
,
M. B. J.
,
2007
, “
Low Temperature Ion Beam Sputter Deposition of Amorphous Silicon Carbide for Wafer-Level Vacuum Sealing,
Proceedings of the IEEE 20th International Conference on Micro Electro Mechanical Systems
(
MEMS
),
Kobe, Japan
, January 21–25. 10.1109/MEMSYS.2007.4432967
23.
Myers
,
D. R.
,
Cheng
,
K. B.
,
Jamshidi
,
B.
,
Azevedo
,
R. G.
,
Senesky
,
D. G.
,
Chen
,
L.
,
Mehregany
,
M.
,
Wijesundara
,
M. B. J.
, and Pisano, “
A.P.A Silicon Carbide Resonant Tuning Fork for Micro-Sensing Applications in High Temperature and High G-Shock Environments
,”
J. Micro/Nanolith, MEMS MOEMS
,
8
(
2
), p.
021116
.10.1117/1.3143192
24.
Yamaguchi
,
M.
,
Baba
,
M.
,
Suezawa
,
K.
,
Moizumi
,
T.
,
Arai
,
K. I.
,
Haga
,
A.
,
Shimada
,
Y.
,
Tanabe
,
S.
, and
Itoh
,
K.
,
2000
, “
Improved RF Integrated Magnetic Thin-Film Inductors by Means of Micro Slits and Surface Planarization Techniques
,”
IEEE Trans. Magn.
,
36
, pp.
3495
3498
.10.1109/20.908872
25.
Yamaguchi
,
M.
,
Baba
,
M.
, and
Arai
,
K. I.
,
2001
, “
Sandwich-Type Ferromagnetic RF Integrated Inductor
,”
IEEE Trans. Microwave Theory Tech.
,
49
, pp.
2331
2335
.10.1109/22.971617
26.
Yamaguchi
,
M.
,
Bae
,
S.
,
Kim
,
K. H.
,
Tan
,
K.
,
Kusumi
,
T.
, and
Yamakawa
,
K.
,
2005
. “
Ferromagnetic RF Integrated Inductor With Closed Magnetic Circuit Structure
,”
IEEE MTT-S International Microwave Symposium Digest
, Long Beach, CA, June 12–17, pp.
351
354
.10.1109/MWSYM.2005.1516599
27.
Zhuang
,
Y.
,
Vroubel
,
M.
,
Rejaei
,
B.
, and
Burghartz
,
J. N.
,
2002
, “
Ferromagnetic RF Inductors and Transformers for Standard CMOS/BiCMOS
,” International Electron Devices Meeting (
IEDM '02
), San Francisco, CA, December 8–11, pp.
475
478
.10.1109/IEDM.2002.1175882
28.
Zhuang
,
Y.
,
Vroubel
,
M.
,
Rejaei
,
B.
,
Burghartz
,
J. N.
, and
Attenborough
,
K.
,
2005
, “
Magnetic Properties of Electroplated Nano/Microgranular NiFe Thin Films for RF Application
,”
J. Appl. Phys.
,
97
, p.
10N305
.10.1063/1.1857391
29.
Zhuang
,
Y.
,
Rejaei
,
B.
,
Boellaard
,
E.
,
Vroubel
,
M.
, and
Burghartz
,
J. N.
,
2003
, “
Solenoid Inductors With Patterned, Sputter-Deposited Cr/Fe10Co90/Cr Ferromagnetic Cores
,”
IEEE Electron Device Lett.
,
24
, pp.
224
226
.10.1109/LED.2003.810880
30.
Kim
,
G.
,
Cha
,
S. Y.
,
Hyun
,
E. K.
,
Jung
,
Y.
,
Choi
,
Y.
,
Rieh
,
J. S.
,
Lee
,
S. R.
, and
Hwang
,
S.
,
2008
, “
Integrated Planar Spiral Inductors With CoFe and NiFe Ferromagnetic Layer
,”
Microwave Opt. Technol. Lett.
,
50
, pp.
676
678
.10.1002/mop.23180
31.
Gardner
,
D. S.
,
Schrom
,
G.
,
Hazucha
,
P.
,
Paillet
,
F.
,
Karnik
,
T.
,
Borkar
,
S.
,
Saulters
,
J.
,
Owens
,
J.
, and
Wetzel
,
J.
,
2006
, “
Integrated On-Chip Inductors With Magnetic Films
,” IEEE International Electron Devices Meeting (
IEDM '06
), San Francisco, CA, December 11–13, pp.
1
4
.10.1109/IEDM.2006.347002
32.
Gardner
,
D. S.
,
Schrom
,
G.
,
Hazucha
,
P.
,
Paillet
,
F.
,
Karnik
,
T.
and
Borkar
,
S.
,
2007
, “
Integrated On-Chip Inductors Design of Magnetic Medium Material and Fully-Closed With Magnetic Films
,”
IEEE Trans. Magn.
,
43
, pp.
2615
2617
.10.1109/TMAG.2007.893794
33.
Viala
,
B.
,
Royet
,
A. S.
,
Cuchet
,
R.
,
Ad
,
M.
,
Gaud
,
P.
,
Valls
,
O.
,
Ledieu
,
M.
, and
Acher
O.
,
2004
, “
RF Planar Ferromagnetic Inductors on Silicon
,”
IEEE Trans. Magn.
,
40
, pp.
1999
2001
.10.1109/TMAG.2004.832486
34.
Viala
,
B.
,
Couderc
,
S.
,
Royet
,
A.S.
,
Ancey
,
P.
, and
Bouche
,
G.
,
2005
, “
Bidirectional Ferromagnetic Spiral Inductors Using Single Deposition
,”
IEEE Trans. Magn.
,
41
, pp.
3544
3549
.10.1109/TMAG.2005.854727
35.
Xu
,
W.
,
Sinha
,
S.
,
Pan
,
F.
,
Dastagir
,
T.
,
Cao
,
Y.
, and
Yu
,
H.
,
2010
, “
Improved Frequency Response of On-Chip Inductors With Patterned Magnetic Dots
,”
IEEE Electron Device Lett.
,
31
, pp.
207
209
.10.1109/LED.2009.2039112
36.
Jiang
,
R. F.
,
Shams
,
N. N.
,
Rahman
,
M. T.
, and
Lai
,
C. H.
,
2007
, “
Exchange-Coupled IrMn/CoFe Multilayers for RF-Integrated Inductors
,”
IEEE Trans. Magn.
,
43
, pp.
3930
3932
.10.1109/TMAG.2007.892868
37.
Ikeda
,
K.
,
Kobayashi
,
K.
,
Ohta
,
K.
,
Kondo
,
R.
,
Suzuki
,
T.
, and
Fujimoto
,
M.
,
2003
, “
Thin-Film Inductor for Gigahertz Band With CoFeSiO-SiO2 Multilayer Granular Films and Its Application for Power Amplifier Module
,”
IEEE Trans. Magn.
,
39
, pp.
3057
3061
.10.1109/TMAG.2003.815893
38.
Zhao
,
J.
,
Zhu
,
J.
,
Chen
,
Z.
, and
Liu
,
Z.
,
2005
, “
Radio-Frequency Planar Integrated Inductor With Permalloy Granular Films
,”
IEEE Trans. Magn.
,
41
, pp.
2334
2338
.10.1109/TMAG.2005.852949
39.
Hsu
,
M. C.
,
Chao
,
T. Y.
,
Cheng
,
Y. Y.
,
Liu
,
C. M.
, and
Chen
,
C.
,
2009
, “
The Inductance Enhancement Study of Spiral Inductor Using Ni–AAO Nanocomposite Core
,”
IEEE Trans. Nanotechnol.
,
8
, pp.
281
285
.10.1109/TNANO.2009.2015758
40.
Salvia
,
J.
,
Bain
,
J. A.
, and
Patrick Yue
,
C.
,
2005
, “
Tunable On-Chip Inductors Up to 5 GHz Using Patterned Permalloy Laminations
,” IEEE International Electron Devices Meeting,
IEDM Technical Digest
, Washington, DC, December 5, pp.
943
946
.10.1109/IEDM.2005.1609516
41.
Rousselle
,
D.
,
Berthault
,
A.
,
Acher
,
O.
,
Bouchaud
,
J. P.
, and
Zrah
,
P. G.
,
1993
,
Effective Medium at Finite Frequency: Theory and Experiment
,
J. Appl. Phys.
,
74
, pp.
475
479
.10.1063/1.355256
42.
Wallace
,
L.
,
1993
, “
Broadband Magnetic Microwave Absorbers: Fundamental Limitations
,”
IEEE Trans. Magn.
,
29
, pp.
4209
4214
.10.1109/20.280862
43.
Jackson
,
J. D.
,
1998
,
Classical Electrodynamics
,
3rd ed.
,
Wiley
,
New York
.
44.
Zohdi
,
T. I.
,
2002
, “
An Adaptive-Recursive Staggering Strategy for Simulating Multifield Coupled Processes in Microheterogeneous Solids
,”
Int. J. Numer. Methods Eng.
,
53
, pp.
1511
1532
.10.1002/nme.348
45.
Zohdi
,
T. I.
,
2004
, “
Modeling and Direct Simulation of Near-Field Granular Flows
,”
Int. J. Solids Struct.
,
42
(
2
),
pp 539
564
.10.1016/j.ijsolstr.2004.06.020
46.
Zohdi
,
T. I.
,
2004
, “
A Computational Framework for Agglomeration in Thermo-Chemically Reacting Granular Flows
,”
Proc. Royal Soc.
,
460
(
2052
), pp.
3421
3445
.10.1098/rspa.2004.1277
47.
Zohdi
,
T. I.
,
2005
, “
Charge-Induced Clustering in Multifield Particulate Flow
,”
Int. J. Numer. Methods Eng.
,
62
(
7
), pp.
870
898
.10.1002/nme.1194
48.
Zohdi
,
T. I.
,
2007
, “
Computation of Strongly Coupled Multifield Interaction in Particle-Fluid Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
196
, pp.
3927
3950
.10.1016/j.cma.2006.10.040
49.
Zohdi
,
T. I.
,
2007
,
Introduction to the Modeling and Simulation of Particulate Flows
,
SIAM
, Philadelphia, PA.
50.
Zohdi
,
T. I.
and
Wriggers
,
P.
,
2008
,
Introduction to Computational Micromechanics
,
Springer-Verlag
,
New York
.
51.
Zohdi
,
T. I.
, “
On the Dynamics of Charged Electromagnetic Particulate Jets
,”
Arch. Comput. Methods Eng.
,
17
(
2
), pp.
109
135
.10.1007/s11831-010-9044-3
52.
Zohdi
,
T. I.
,
2012
,
Dynamics of Charged Particulate Systems: Modeling, Theory and Computation
,
Springer-Verlag
,
New York
.
53.
Frenklach
,
M.
, and
Carmer
,
C. S.
,
1999
, “
Molecular Dynamics Using Combined Quantum and Empirical Forces: Application to Surface Reactions
,” Molecular Dynamics of Clusters, Surfaces, Liquids, and Interfaces (Advances in Classical Trajectory Methods), Vol. IV,
W. L.
Hase
, ed., JAI Press, Stamford, CT, pp.
27
63
.
54.
Haile
,
J. M.
,
1992
,
Molecular Dynamics Simulations: Elementary Methods
,
Wiley
,
New York
.
55.
Hase
,
W. L.
, ed.,
1999
,
Molecular Dynamics of Clusters, Surfaces, Liquids, & Interfaces
(Advances in Classical Trajectory Methods), Vol.
4
,
JAI Press
, Greenwich, CT.
56.
Rapaport
,
D. C.
,
1995
,
The Art of Molecular Dynamics Simulation
,
Cambr
idge
University, Cambridge, UK.
57.
Torquato
,
S.
,
2009
, “
Inverse Optimization Techniques for Targeted Self-Assembly
,”
Soft Matter
5
, pp.
1157
1173
.10.1039/b814211b
58.
Rechtsman
,
M.
,
Stillinger
,
F. H.
, and
Torquato
,
S.
,
2006
, “
Designed Interaction Potentials Via Inverse Methods for Self-Assembly
,”
Phys. Rev. E
73
, p.
011406
.10.1103/PhysRevE.73.011406
59.
Rechtsman
,
M.
,
Stillinger
,
F. H.
, and
Torquato
,
S.
,
2005
, “
Optimized Interactions for Targeted Self-Assembly: Application to Honeycomb Lattice
,”
Phys. Rev. Lett.
,
95
, p.
228301
.10.1103/PhysRevLett.95.228301
60.
Moelwyn-Hughes
,
E. A.
,
1961
,
Physical Chemistry
,
Pergamon
,
New York
.
61.
Stillinger
,
F. H.
, and
Weber
,
T. A.
,
1985
, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
,
31
, pp.
5262
5271
.10.1103/PhysRevB.31.5262
62.
Tersoff
,
J.
,
1988
, “
Empirical Interatomic Potential for Carbon, With Applications to Amorphous Carbon
,”
Phys. Rev. Lett.
,
61
, pp.
2879
2882
.10.1103/PhysRevLett.61.2879
63.
Zohdi
,
T. I.
,
2010
, “
Simulation of Coupled Microscale Multiphysical-Fields in Particulate-Doped Dielectrics With Staggered Adaptive FDTD
,”
Comput. Methods Appl. Mech. Eng.
,
199
, pp.
79
101
.10.1016/j.cma.2010.06.032
You do not currently have access to this content.