Acoustic metamaterials are those structurally engineered materials that are composed of periodic cells designed in such a fashion to yield specific material properties (density and bulk modulus) that would affect the wave propagation pattern within in a specific way. All the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a new class of composite one-dimensional active acoustic metamaterials (CAAMM) with effective densities and bulk moduli that are programmed to vary according to any prescribed patterns along its volume. A cylindrical water-filled cylinder coupled to two piezoelectric elements form a composite cell to act as a base unit for a periodic metamaterial structure. Two different configurations are considered. In the first configuration, a piezoelectric panel is flash-mounted to the face of the cylinder, while the other is side-mounted to the cylinder wall, introducing a variable stiffness along the wave propagation path. In the second configuration, the face-mounted piezoelectric panel remains unchanged, while the side-mounted panel is replaced with an active Helmholtz resonator with piezoelectric base panel. A detailed theoretical lumped-parameter model for the two configurations is present, from which the stiffness of both active elements is controlled via charge feedback control to yield arbitrary homogenized effective bulk modulus and density over a very wide frequency range. Numerical examples are presented to demonstrate the performance characteristics of the proposed. The CAAMM presents a viable approach to the development of effective domains with a controllable wave propagation pattern to suit many applications.

References

1.
Lapine
,
M.
,
2007
, “
The Age of Metamaterials
,”
Metamaterials
,
1
, p.
1
.10.1016/j.metmat.2007.02.006
2.
Shamonina
,
E.
, and
Solymar
,
L.
,
2007
, “
Metamaterials: How the Subject Started
,”
Metamaterials
,
1
(
1
), pp.
12
18
.10.1016/j.metmat.2007.02.001
3.
Gil
,
M.
,
Bonache
,
J.
, and
Martín
,
F.
,
2008
, “
Metamaterial Filters: A Review
,”
Metamaterials
,
2
(
4
), pp.
186
197
.10.1016/j.metmat.2008.07.006
4.
Engheta
,
N.
, and
Ziolkowski
,
R. W.
,
2006
,
Metamaterials: Physics and Engineering Explorations
,
Wiley-IEEE
,
New York
.
5.
Pendry
,
J. B.
,
2000
, “
Negative Refraction Makes a Perfect Lens
,”
Phys. Rev. Lett.
,
85
(
18
), pp.
3966
3969
.10.1103/PhysRevLett.85.3966
6.
Pendry
,
J.
,
Schurig
,
D.
, and
Smith
,
D.
,
2006
, “
Controlling Electromagnetic Fields
,”
Science
,
312
(
5781
), pp.
1780
1782
.10.1126/science.1125907
7.
Cummer
,
S. A.
,
Popa
,
B. I.
,
Schurig
,
D.
,
Smith
,
D. R.
, and
Pendry
,
J.
,
2006
, “
Full-Wave Simulations of Electromagnetic Cloaking Structures
,”
Phys. Rev. E
,
74
(
3
), p.
036621
.10.1103/PhysRevE.74.036621
8.
Wu
,
Q.
,
Zhang
,
K.
,
Meng
,
F.
, and
Li
,
L. W.
,
2009
, “
Material Parameters Characterization for Arbitrary N-Sided Regular Polygonal Invisible Cloak
,”
J. Phys. D: Appl. Phys.
,
42
, p.
035408
.10.1088/0022-3727/42/3/035408
9.
Guenneau
,
S.
,
Movchan
,
A.
,
Pétursson
,
G.
, and
Ramakrishna
,
S. A.
,
2007
, “
Acoustic Metamaterials for Sound Focusing and Confinement
,”
New J. Phys.
,
9
, p.
399
.10.1088/1367-2630/9/11/399
10.
Cervera
,
F.
,
Sanchis
,
L.
,
Sánchez-Perez
,
J.
,
Martinez-Sala
,
R.
,
Rubio
,
C.
,
Meseguer
,
F.
,
López
,
C.
,
Caballero
,
D.
, and
Sánchez-Dehesa
,
J.
,
2002
, “
Refractive Acoustic Devices for Airborne Sound
,”
Phys. Rev. Lett.
,
88
, p.
023902
.10.1103/PhysRevLett.88.023902
11.
Climente
,
A.
,
Torrent
,
D.
, and
Sanchez-Dehesa
,
J.
,
2010
, “
Sound Focusing by Gradient Index Sonic Lenses
,”
Appl. Phys. Lett.
,
97
, p.
104103
.10.1063/1.3488349
12.
Sánchez-Dehesa
,
J.
,
Garcia-Chocano
,
V.
,
Torrent
,
D.
,
Cervera
,
F.
,
Cabrera
,
S.
, and
Simon
,
S.
,
2011
, “
Noise Control by Sonic Crystal Barriers Made of Recycled Materials
,”
J. Acoust. Soc. Am.
,
129
(
3
), pp.
1173
1183
.10.1121/1.3531815
13.
Theodore
,
P.
,
Nicholas
,
M.
,
Orris
,
G.
,
Cai
,
L.
,
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2010
, “
Sonic Gradient Index Lens for Aqueous Applications
,”
Appl. Phys. Lett.
,
97
, p.
113503
.10.1063/1.3489373
14.
Torrent
,
D.
, and
Sánchez-Dehesa
,
J.
,
2007
, “
Acoustic Metamaterials for New Two-Dimensional Sonic Devices
,”
New J. Phys.
,
9
, p.
323
.10.1088/1367-2630/9/9/323
15.
Sánchez-Pérez
,
J.
,
Caballero
,
D.
,
Mártinez-Sala
,
R.
,
Rubio
,
C.
,
Sánchez-Dehesa
,
J.
,
Meseguer
,
F.
,
Llinares
,
J.
, and
Gálvez
,
F.
,
1998
, “
Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders
,”
Phys. Rev. Lett.
,
80
(
24
), pp.
5325
5328
.10.1103/PhysRevLett.80.5325
16.
Sanchis
,
L.
,
Cervera
,
F.
,
Sanchez-Dehesa
,
J.
,
Sanchez-Perez
,
J.
,
Rubio
,
C.
, and
Martinez-Sala
,
R.
,
2001
, “
Reflectance Properties of Two Dimensional Sonic Band Gap Crystals
,”
J. Acoust. Soc. Am.
,
109
, pp.
2598
2605
.10.1121/1.1369784
17.
Sanchis
,
L.
,
Hakansson
,
A.
,
Cervera
,
F.
, and
Sanchez-Dehesa
,
J.
,
2003
, “
Acoustic Interferometers Based on Two-Dimensional Arrays of Rigid Cylinders in Air
,”
Phys. Rev. B
,
67
, p.
035422
.10.1103/PhysRevB.67.035422
18.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
,
2009
, “
Acoustic Metamaterial With Negative Density
,”
Phys. Lett. A
,
373
(
48
), pp.
4464
4469
.10.1016/j.physleta.2009.10.013
19.
Huang
,
H.
,
Sun
,
C.
, and
Huang
,
G.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.10.1016/j.ijengsci.2008.12.007
20.
Yao
,
S.
,
Zhou
,
X.
, and
Hu
,
G.
,
2008
, “
Experimental Study on Negative Effective Mass in a 1D Mass–Spring System
,”
New J. Phys.
,
10
, p.
043020
.10.1088/1367-2630/10/4/043020
21.
Cheng
,
Y.
,
Xu
,
J.
, and
Liu
,
X.
,
2008
, “
One-Dimensional Structured Ultrasonic Metamaterials With Simultaneously Negative Dynamic Density and Modulus
,”
Phys. Rev. B
,
77
(
4
), p.
045134
.10.1103/PhysRevB.77.045134
22.
Milton
,
G. W.
, and
Willis
,
J. R.
,
2007
, “
On Modifications of Newton's Second Law and Linear Continuum Elastodynamics
,”
Proc. R. Soc. London
,
463
(
2079
), p.
855
.10.1098/rspa.2006.1795
23.
Chan
,
C.
,
Li
,
J.
, and
Fung
,
K.
,
2006
, “
On Extending the Concept of Double Negativity to Acoustic Waves
,”
J. Zhejiang Univ., Sci.
,
7
(
1
), pp.
24
28
.10.1631/jzus.2006.A0024
24.
Li
,
J.
, and
Chan
,
C.
,
2004
, “
Double-Negative Acoustic Metamaterial
,”
Phys. Rev. E
,
70
(
5
), p.
055602
.10.1103/PhysRevE.70.055602
25.
Ding
,
Y.
,
Liu
,
Z.
,
Qiu
,
C.
, and
Shi
,
J.
,
2007
, “
Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density
,”
Phys. Rev. Lett.
,
99
(
9
), p.
93904
.10.1103/PhysRevLett.99.093904
26.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
,
2009
, “
Acoustic Metamaterial With Negative Modulus
,”
J. Phys.: Condens. Matter
,
21
, p.
175704
.10.1088/0953-8984/21/17/175704
27.
Choi
,
S.
, and
Kim
,
Y. H.
,
2002
, “
Sound-Wave Propagation in a Membrane–Duct (L)
,”
J. Acoust. Soc. Am.
,
112
, p.
1749
.10.1121/1.1509761
28.
Chiu
,
Y.
,
Cheng
,
L.
, and
Huang
,
L.
,
2006
, “
Drum-Like Silencers Using Magnetic Forces in a Pressurized Cavity
,”
J. Sound Vib.
,
297
(
3–5
), pp.
895
915
.10.1016/j.jsv.2006.05.006
29.
Esteve
,
S. J.
, and
Johnson
,
M. E.
,
2005
, “
Adaptive Helmholtz Resonators and Passive Vibration Absorbers for Cylinder Interior Noise Control
,”
J. Sound Vib.
,
288
(
4–5
), pp.
1105
1130
.10.1016/j.jsv.2005.01.017
30.
Nagaya
,
K.
,
Hano
,
Y.
, and
Suda
,
A.
,
2001
, “
Silencer Consisting of Two-Stage Helmholtz Resonator With Auto-Tuning Control
,”
J. Acoust. Soc. Am.
,
110
, p.
289
.10.1121/1.1370524
31.
Kostek
,
T. M.
, and
Franchek
,
M. A.
,
2000
, “
Hybrid Noise Control in Ducts
,”
J. Sound Vib.
,
237
(
1
), pp.
81
100
.10.1006/jsvi.2000.3056
32.
Akl
,
W.
, and
Baz
,
A.
,
2010
, “
Multi-Cell Active Acoustic Metamaterial With Programmable Bulk Modulus
,”
J. Intell. Mater. Syst. Struct.
,
21
, pp.
541
556
.10.1177/1045389X09359434
33.
Akl
,
W.
,
Smoker
,
J.
, and
Baz
,
A.
,
2011
, “
Acoustic Metamaterial With Controllable Directivity and Dispersion Characteristics
,”
Proc. SPIE 7977
, Active and Passive Smart Structures and Integrated Systems 2011,
San Diego, CA
, March 7–10, Paper No. 79771D.10.1117/12.880697
34.
Baz
,
A.
,
2009
, “
The Structure of an Active Acoustic Metamaterial With Tunable Effective Density
,”
New J. Phys.
,
11
, p.
123010
.10.1088/1367-2630/11/12/123010
35.
Baz
,
A.
,
2010
, “
An Active Acoustic Metamaterial With Tunable Effective Density
,”
ASME J. Vibr. Acoust.
,
132
(
4
), pp.
1
9
.10.1115/1.4000983
36.
Lighthill
,
J.
,
2001
,
Waves in Fluids
,
Cambridge University
,
Cambridge, UK
.
37.
Rossing
,
T. D.
,
2007
,
Springer Handbook of Acoustics
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.