In this paper, the Homotopy perturbation method (HPM) is used to analysis the geometrically nonlinear vibrations of thin rectangular laminated functionally graded material (FGM) plates. The Von Karman's strain-displacement relations have been employed to model structural nonlinearity of the system. The material properties of the plate are assumed to be graded continuously in direction of thickness. The effects of initial deflection, aspect ratio and material properties are investigated. Based on the results of this study, the first order approximation of the HPM leads to highly accurate solutions for geometrically nonlinearity vibration of FGM plates. Moreover, HPM in comparison with other traditional analytical methods (e.g., perturbation methods) has excellent accuracy for the whole range of oscillation amplitude and initial conditions.

References

References
1.
Reddy
,
J. N.
, and
Chin
,
C. D.
,
1998
, “
Thermo Mechanical Analysis of Functionally Graded Cylinders and Plates
,”
J. Therm. Stress.
,
21
(
6
), pp.
593
626
.10.1080/01495739808956165
2.
Cheng
,
Z. Q.
, and
Barta
,
R. C.
,
2000
, “
Exact Correspondence Between Eigenvalues of Membranes and Functionally Graded Simply Supported Polygonal Plates
,”
J. Sound Vib.
,
229
, pp.
879
895
.10.1006/jsvi.1999.2525
3.
Ng
,
T. Y.
,
Lam
,
K. Y.
, and
Liew
,
K. M.
,
2000
, “
Effects of FG Materials on the Parametric Resonance of Plate Structures
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
953
962
.10.1016/S0045-7825(99)00455-7
4.
Yang
,
J.
,
Kitipornchai
,
S.
, and
Liew
,
K. M.
,
2003
, “
Large Amplitude Vibration of Thermo-Electro-Mechanically Stressed FGM Laminated Plates
,”
Comput. Methods Appl. Mech. Eng.
,
192
, pp.
3861
3885
.10.1016/S0045-7825(03)00387-6
5.
Qien
,
L. F.
,
Batra
,
R. C.
, and
Chen
L. M.
,
2004
, “
Static and Dynamic Deformations of Thick Functionally Graded Elastic Plate by Using Higher-Order Shear and Normal Deformable Plate Theory and Mesh Less Local Petrov-Galerkin Method
,”
Comps. Part B Eng.
,
35
, pp.
685
697
.10.1016/j.compositesb.2004.02.004
6.
Vel
,
S. S.
, and
Batra
,
R. C.
,
2004
, “
Three-Dimensional Exact Solution for the Vibration of Functionally Graded Rectangular Plates
,”
J. Sound Vib.
,
272
, pp.
703
730
.10.1016/S0022-460X(03)00412-7
7.
Sundararajan
,
N.
,
Prakash
,
T.
, and
Ganapathi
,
M.
,
2005
, “
Nonlinear Free Flexural Vibrations of Functionally Graded Rectangular and Skew Plates Under Thermal Environments
,”
Finite Elements Anal. Des.
,
42
, pp.
152
168
.10.1016/j.finel.2005.06.001
8.
Abrate
,
S.
,
2006
, “
Free Vibration Buckling and Static Deflections of Functionally Graded Plates
,”
Comput. Sci. Technol.
,
66
, pp.
2383
2394
.10.1016/j.compscitech.2006.02.032
9.
Hashemi
,
Sh. H.
,
Taher
,
H. R. D.
,
Akhavan
,
H.
, and
Omidi
,
M.
,
2010
, “
Free Vibration of Functionally Graded Rectangular Plates Using First-Order Shear Deformation Plate Theory
,”
Appl. Math. Model.
,
34
, pp.
1276
1291
.10.1016/j.apm.2009.08.008
10.
He
,
J. H.
,
1999
, “
Homotopy Perturbation Technique
,”
Comput. Meth. Appl. Mech. Eng.
,
178
,
pp 257
-
262
.10.1016/S0045-7825(99)00018-3
11.
Sun
,
X.
,
Du
,
L.
, and
Yang
,
V.
,
2007
, “
A Homotopy Method for Determining the Eigenvalues of Locally or Non-Locally Reacting Acoustic Liners in Flow Ducts
,”
J. Sound Vib.
,
303
, pp.
277
286
.10.1016/j.jsv.2007.01.020
12.
Blendez
,
A.
,
Blendez
,
T.
,
Marquez
,
A.
, and
Niepp
,
A.
,
2008
, “
Application of He's Homotopy Perturbation Method to Conservative Truly Non-Linear Oscillators
,”
Chaos, Solitons Fractals
,
37
(
3
), pp.
770
780
.10.1016/j.chaos.2006.09.070
13.
Yongqiang
,
L.
,
Feng
,
L.
, and
Dawei
,
Z.
,
2010
, “
Geometrically Non-Linear Free Vibrations of the Symmetric Rectangular Honeycomb Sandwich Panels With Simply Supported Boundaries
,”
Compos. Struct.
,
92
, pp.
1110
1119
.10.1016/j.compstruct.2009.10.012
14.
Pirbodaghi
,
T.
,
Fesanghary
,
M.
, and
Ahmadian
,
M.T.
,
2011
, “
Non-Linear Vibration Analysis of Laminated Composite Plates Resting on Non-Linear Elastic Foundations
,”
J. Franklin Inst.
,
348
, pp.
353
368
.10.1016/j.jfranklin.2010.12.002
15.
Singh
,
G.
,
Raju
,
K.K.
,
Rao
,
G.V.
,
1990
, “
Non-Linear Vibrations of Simply Supported Rectangular Cross-Ply Plates
,”
J. Sound Vib.
,
142
, pp.
213
226
.10.1016/0022-460X(90)90553-C
You do not currently have access to this content.