For the hybrid uncertain acoustic field prediction with random and interval variables, the random interval dynamic equilibrium equation is established and two hybrid probabilistic interval perturbation methods, named as hybrid perturbation Monte Carlo method (HPMCM) and hybrid perturbation vertex method (HPVM), are present. In HPMCM, the intervals of expectation and variance of sound pressure are calculated by a combination of the random interval matrix perturbation method, the random interval moment method and Monte Carlo method. In HPVM, the intervals of expectation and variance of sound pressure are calculated by a combination of the random interval matrix perturbation method, the random interval moment method and the vertex method. Numerical results on a 2D acoustic tube, the 2D acoustic cavity of a car and a 3D acoustic cavity verify the effectiveness and the high efficiency of HPVM when compared with HPMCM. HPVM can be considered as an effective engineering method to quantify the effects of parametric uncertainty on the sound pressure response.

References

References
1.
Capiez–Lernout
,
E.
, and
Soize
,
C.
,
2008
, “
Design Optimization With an Uncertain Vibroacoustic Model
,”
ASME J. Vib. Acoust.
,
130
(
2
), p.
021001
.10.1115/1.2827988
2.
Figiel
,
L.
, and
Kamiński
,
M.
,
2009
, “
Numerical Probabilistic Approach to Sensitivity Analysis in a Fatigue Delamination Problem of a Two Layer Composite
,”
Appl. Math. Comput.
,
209
(
1
), pp.
75
90
.10.1016/j.amc.2008.06.039
3.
Seçgin
,
A. J.
,
Dunne
,
F.
, and
Zoghaib.
,
L.
,
2012
, “
Extreme–Value–Based Statistical Bounding of Low, Mid, and High Frequency Responses of a Forced Plate With Random Boundary Conditions
,”
ASME J. Vib. Acoust.
,
134
(
2
), p.
021003
.10.1115/1.4005019
4.
Dunnea
,
L. W.
, and
Dunne
J. F.
,
2009
, “
An FRF Bounding Method for Randomly Uncertain Structures With or Without Coupling to an Acoustic Cavity
,”
J. Sound Vib.
,
322
(
1–2
), pp.
98
134
.10.1016/j.jsv.2008.10.035
5.
Hua
,
X. G.
,
Ni
,
Y. Q.
,
Chen
,
Z. Q.
, and
Ko
,
J. M.
,
2007
, “
An Improved Perturbation Method for Stochastic Finite Element Model Updating
,”
Int. J. Numer. Methods Eng.
,
73
(
13
), pp.
1845
1864
.10.1002/nme.2151
6.
Kamiński
,
M. M.
,
2010
, “
A Generalized Stochastic Perturbation Technique for Plasticity Problems
,”
Comput. Mech.
,
45
(
4
), pp.
349
361
.10.1007/s00466-009-0455-7
7.
Papadimitriou
,
C.
,
Katafygiotis
,
L. S.
, and
Beck
,
J. L.
,
1995
, “
Approximate Analysis of Response Variability of Uncertain Linear Systems
,”
Probab. Eng. Mech.
,
10
(
4
), pp.
251
264
.10.1016/0266-8920(95)00020-8
8.
Adhikari
,
S.
,
2011
, “
Doubly Spectral Stochastic Finite–Element Method for Linear Structural Dynamics
,”
ASCE J. Aerosp. Eng.
,
24
(
3
), pp.
264
276
.10.1061/(ASCE)AS.1943-5525.0000070
9.
Tootkaboni
,
M.
, and
Graham–Brady
,
L.
,
2010
, “
A Multi–Scale Spectral Stochastic Method for Homogenization of Multi–Phase Periodic Composites With Random Material Properties
,”
Int. J. Numer. Methods Eng.
,
83
(
1
), pp.
59
90
.10.1002/nme.2829
10.
Khine
,
Y. Y.
,
Creamer
,
D. B.
, and
Finette
,
S.
,
2010
, “
Acoustic Propagation in an Uncertain Waveguide Environment Using Stochastic Basis Expansions
,”
J. Comput. Acoust.
,
18
(
4
), pp.
397
441
.10.1142/S0218396X10004255
11.
Novick
,
J.
, and
Finette
,
S.
,
2011
, “
Stochastic Basis Expansions Applied to Acoustic Propagation in an Uncertain, Range, and Depth–Dependent, Multi–Layered Waveguide
,”
J. Acoust. Soc. Am.
,
129
(
4
), pp.
2600
2600
.10.1121/1.3588623
12.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
9–12
), pp.
1031
1051
.10.1016/j.cma.2008.11.007
13.
Haukaas
,
T.
, and
Gardoni
,
P.
,
2011
, “
Model Uncertainty in Finite–Element Analysis: Bayesian Finite Elements
,”
ASCE J. Eng. Mech.
,
137
(
8
), pp.
519
526
.10.1061/(ASCE)EM.1943-7889.0000253
14.
Zhan
,
Z.
,
Fu
,
Y.
,
Yang
,
R. J.
, and
Peng
,
Y.
,
2011
, “
An Enhanced Bayesian Based Model Validation Method for Dynamic Systems
,”
ASME J. Mech. Design
,
133
(
4
), p.
041005
.10.1115/1.4003820
15.
Moens
,
D.
, and
Vandepitte
,
D.
,
2006
, “
Recent Advances in Non–Probabilistic Approaches for Non–Deterministic Dynamic Finite Element Analysis
,”
Arch. Comput. Methods Eng.
,
13
(
3
), pp.
389
464
.10.1007/BF02736398
16.
Sim
,
J.
,
Qiu
,
Z. P.
, and
Wang
,
X. J.
,
2007
, “
Modal Analysis of Structures With Uncertain–but–Bounded Parameters via Interval Analysis
,”
J. Sound Vib.
,
303
(
1–2
), pp.
29
45
.10.1016/j.jsv.2006.11.038
17.
Qiu
,
Z.
,
Xia
,
Y.
, and
Yang
,
J.
,
2007
, “
The Static Displacement and the Stress Analysis of Structures With Bounded Uncertainties Using the Vertex Solution Theorem
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
49–52
), pp.
4965
4984
.10.1016/j.cma.2007.06.022
18.
Guo
,
X.
,
Bai
,
W.
, and
Zhang
,
W.
,
2008
, “
Extreme Structural Response Analysis of Truss Structures Under Material Uncertainty via Linear Mixed 0-1 Programming
,”
Int. J. Numer. Meth. Eng.
,
76
(
3
), pp.
253
277
.10.1002/nme.2298
19.
Qiu
,
Z. P.
, and
Elishakoff
,
I.
,
1998
, “
Antioptimization of Structures With Large Uncertain–but–Non–Random Parameters via Interval Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
152
(
3–4
), pp.
361
372
.10.1016/S0045-7825(96)01211-X
20.
Chen
,
S. H.
,
Ma
,
L.
,
Meng
,
G. W.
, and
Guo
,
R.
,
2009
, “
An Efficient Method for Evaluating the Natural Frequency of Structures With Uncertain–but–Bounded Parameters
,”
Comput. Struct.
,
87
(
9–10
), pp.
582
590
.10.1016/j.compstruc.2009.02.009
21.
Rong
,
B.
,
Rui
,
X. T.
, and
Tao
,
L.
,
2012
, “
Perturbation Finite Element Transfer Matrix Method for Random Eigenvalue Problems of Uncertain Structures
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
021005
.10.1115/1.4005574
22.
Degrauwe
,
D.
,
Lombaert
,
G.
, and
De Roeck
,
G.
,
2010
, “
Improving Interval Analysis in Finite Element Calculations by Means of Affine Arithmetic
,”
Comput. Struct.
,
88
(
3–4
), pp.
247
254
.10.1016/j.compstruc.2009.11.003
23.
Cacciola
,
P.
,
Muscolino
,
G.
, and
Versaci
,
C.
,
2011
, “
Deterministic and Stochastic Seismic Analysis of Buildings With Uncertain–but–Bounded Mass Distribution
,”
Comput. Struct.
,
89
(
21–22
), pp.
2028
2036
.10.1016/j.compstruc.2011.05.017
24.
Muscolino
,
G.
, and
Sofi
,
A.
,
2011
, “
Response Statistics of Linear Structures With Uncertain–but–Bounded Parameters Under Gaussian Stochastic Input
,”
Int. J. Struct. Stab. Dyn.
,
11
(
4
), pp.
775
804
.10.1142/S0219455411004348
25.
Muscolino
,
G.
, and
Sofi
,
A.
,
2012
, “
Stochastic Analysis of Structures With Uncertain–but–Bounded Parameters via Improved Interval Analysis
,”
Probab. Eng. Mech.
,
288
, pp.
152
163
.10.1016/j.probengmech.2011.08.011
26.
Gao
,
W.
,
Song
,
C.
,
Song
,
C.
, and
Tin–Loi
,
F.
,
2010
, “
Probabilistic Interval Analysis for Structures With Uncertainty
,”
Struct. Safety
,
32
(
3
), pp.
191
199
.10.1016/j.strusafe.2010.01.002
27.
Gao
,
W.
,
Wu
,
D.
,
Song
,
C.
,
Tin–Loi
,
F.
, and
Li.
,
X.
,
2011
, “
Hybrid Probabilistic Interval Analysis of Bar Structures With Uncertainty Using a Mixed Perturbation Monte Carlo Method
,”
Finite Elem. Anal. Design
,
47
(
7
), pp.
643
652
.10.1016/j.finel.2011.01.007
28.
James
,
K. R.
, and
Dowling
,
D. R.
,
2005
, “
A Probability Density Function Method for Acoustic Field Uncertainty Analysis
,”
J. Acoust. Soc. Am.
,
118
(
5
), pp.
2802
2810
.10.1121/1.2062269
29.
James
,
K. R.
, and
Dowling
,
D. R.
,
2008
, “
A Method for Approximating Acoustic–Field–Amplitude Uncertainty Caused by Environmental Uncertainties
,”
J. Acoust. Soc. Am.
,
124
(
3
), pp.
1465
1476
.10.1121/1.2950088
30.
James
,
K. R.
, and
Dowling
,
D. R.
,
2011
, “
Pekeris Waveguide Comparisons of Methods for Predicting Acoustic Field Amplitude Uncertainty Caused by a Spatially Uniform Environmental Uncertainty (L)
,”
J. Acoust. Soc. Am.
,
129
(
2
), pp.
589
592
.10.1121/1.3531814
31.
Finette
,
S.
,
2009
, “
A Stochastic Response Surface Formulation of Acoustic Propagation Through an Uncertain Ocean Waveguide Environment
,”
J. Acoust. Soc. Am.
,
126
(
5
), pp.
2242
2247
.10.1121/1.3212918
32.
Durand
,
J. F.
,
Soize
,
C.
, and
Gagliardini
,
L.
,
2008
, “
Structural–Acoustic Modeling of Automotive Vehicles in Presence of Uncertainties and Experimental Identification and Validation
,”
J. Acoust. Soc. Am.
,
124
(
3
), pp.
1513
1525
.10.1121/1.2953316
33.
Reynders
,
E.
, and
Langley
,
R. S.
,
2012
, “
Response Probability Distribution of Built–Up Vibro–Acoustic Systems
,”
J. Acoust. Soc. Am.
,
131
(
2
), pp.
1138
1149
.10.1121/1.3674998
You do not currently have access to this content.