This works aims to investigate the effect of axial forces on the static behavior and the fundamental natural frequency of electrostatically actuated MEMS arches. The analysis is based on a nonlinear equation of motion of a shallow arch under axial and electrostatic forces. The static equation is solved using a reduced-order model based on the Galerkin procedure. The effects of the axial and electrostatic forces on the static response are examined. Then, the eigenvalue problem of the arch is solved for various equilibrium positions. Several results are shown for the variations of the natural frequency and equilibrium position of the arch under axial forces ranging from compressive loads beyond buckling to tensile loads and for voltage loads starting from small values to large values near the pull-in instability. It is found that the dynamics of MEMS arches are very sensitive to axial forces, which may be induced unintentionally through microfabrication processes or due to temperature variations while in use. On the other hand, it is shown that axial forces can be used deliberately to control the dynamics of MEMS arches to achieve desirable functions, such as extending their stable operation range and tuning their natural frequencies.

References

References
1.
Go
,
J. S.
,
Cho
,
Y.
,
Kwak
,
B. M.
, and
Kwanhum
,
P.
,
1996
, “
Snapping Microswitch With Adjustable Acceleration Threshold
,”
Sensor. Actuator.
,
45
, pp.
579
583
.10.1016/S0924-4247(97)80018-0
2.
Saif
,
M. T. A.
,
2000
, “
On a Tunable Bistable MEMS—Theory and Experiment
,”
J. Microelectromech. Syst.
,
9
, pp.
157
170
.10.1109/84.846696
3.
Masters
,
N. D.
, and
Howell
,
L. L. A.
,
2003
, “
Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
, pp.
73
80
.10.1109/JMEMS.2003.811751
4.
Rossiter
,
J.
,
Stoimenov
,
B.
, and
Mukai
,
T.
,
2006
, “
A Self-Switching Bistable Artificial Muscle Actuator
,”
Proceedings of the Society of Instrument and Control Engineers-International Conference on Advanced Software Engineering (SICE-ICASE) International Joint Conference
,
Busan
,
Korea
, pp.
5847
5852
.
5.
Receveur
,
R. A.
,
Marxer
,
C. R.
,
Woering
,
R.
,
Larik
,
V. C.
, and
de Rooij
,
N. F.
,
2005
, “
Laterally Moving Bistable MEMS DC Switch for Biomedical Applications
,”
J. Microelectromech. Syst.
,
14
, pp.
89
98
.10.1109/JMEMS.2005.851843
6.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
,
2008
, “
Bistable Nanowire for Micromechanical Memory
,”
J. Micromech. Microeng.
18
(
4
), p.
045005
.10.1088/0960-1317/18/4/045005
7.
Sulfridge
,
M.
,
Saif
,
T.
,
Miller
,
N.
, and
Meinhart
,
M.
,
2004
, “
Nonlinear Dynamic Study of a Bistable MEMS: Model and Experiment
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
725
731
.10.1109/JMEMS.2004.835766
8.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sensor. Actuator.
,
69
(
3
), pp.
212
216
.10.1016/S0924-4247(98)00097-1
9.
Yang
,
Y. J.
, and
Kim
,
C. J.
,
1995
, “
Testing and Characterization of a Bistable Snapping Microactuator Based on Thermo-Mechanical Analysis
,”
Proc. IEEE Solid State Sensor and Actuator Workshop
,
Stockholm
,
Sweden
, June
25
29
.10.1109/SENSOR.1995.721815
10.
Wagner
,
B.
,
Quenzer
,
H. J.
,
Hoershelmann
,
S.
,
Lisec
,
T.
, and
Juerss
,
M.
,
1996
, “
Bistable Microvalves With Pneumatically Coupled Membranes
,”
Proc. IEEE MEMS'96
,
San Diego, CA
, February 11–15. 10.1109/MEMSYS.1996.494012
11.
Qui
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H. A.
,
2004
, “
Curved Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
, pp.
137
146
.10.1109/JMEMS.2004.825308
12.
Han
,
J. S.
,
Ko
,
J. S.
,
Kim
,
Y. T.
, and
Kwak
,
B. M.
,
2002
, “
Parametric Study and Optimization of a Micro-Optical Switch With a Laterally Driven Electromagnetic Microactuator
,”
J. Micromech. Microeng.
,
12
, pp.
39
47
.10.1088/0960-1317/12/6/326
13.
Seunghoon
,
P.
, and
Dooyoung
,
H.
,
2008
, “
Pre-Shaped Buckled-Beam Actuators: Theory and Experiment
,”
Sensor. Actuator.
,
148
, pp.
186
192
.10.1016/j.sna.2008.07.009
14.
Michael
,
A.
, and
Kwok
,
C. Y.
,
2006
, “
Design Criteria for Bistable Behavior in a Buckled Multi-Layered MEMS Bridge
,”
J. Micromech. Microeng.
,
16
, pp.
34
43
.10.1088/0960-1317/16/10/016
15.
Qui
,
J.
,
Lang
,
J. H.
,
Slocum
,
A. H.
, and
Weber
,
A. C.
,
2005
, “
A Bulk-Micromachined Bistable Relay With U-Shaped Thermal Actuators
,”
J. Microelectromech. Syst.
,
14
, pp.
99
109
.10.1109/JMEMS.2005.856676
16.
Li
,
H.
, and
Balachandran
,
B.
,
2006
, “
Buckling and Free Oscillations of Composite Microresonators
,”
J. Microelectromech. Syst.
,
15
, pp.
42
51
.10.1109/JMEMS.2005.863598
17.
Li
,
H.
,
Preidikman
,
S.
,
DeVoe
,
D. J.
, and
Balachandran
,
B.
,
2008
, “
Nonlinear Oscillation of Piezoelectric Microresonators With Curved Cross-Section
,”
Sensor Actuator.
,
144
, pp.
194
200
.10.1016/j.sna.2007.12.015
18.
Buchaillot
,
L.
,
Millet
,
O.
,
Quévy
,
E.
, and
Collard
,
D.
,
2007
, “
Post-Buckling Dynamic Behavior of Self-Assembled 3D Microstructures
,”
Microsyst. Technol.
,
14
, pp.
69
78
.10.1007/s00542-007-0400-7
19.
Cabal
,
A.
, and
Ross
,
D. S.
,
2007
, “
Snap-Through Bilayer Microbeam
,”
Nanotech.
,
1
, pp.
230
233
.
20.
Zhang
,
Y.
,
Wang
,
Y.
,
Li
,
Z.
,
Huang
,
Y.
, and
Li
,
D.
,
2007
, “
Snap-Through and Pull-In Instabilities of an Arch-Shaped Beam Under an Electrostatic Loading
,”
J Microelectromech Syst.
,
16
, pp.
684
693
.10.1109/JMEMS.2007.897090
21.
Zhang
,
Y.
,
Wang
,
Y.
, and
Li
,
Z.
,
2010
, “
Analytical Method of Predicting the Instabilities of a Micro Arch-Shaped Beam Under Electrostatic Loading
,”
Microsyst. Technol.
,
16
, pp.
909
918
.10.1007/s00542-010-1031-y
22.
Terre
,
J. C.
,
Marques
,
A. F.
, and
Shkel
,
A. M.
,
2008
, “
Snap-Action Bistable Micromechanics Actuated by Nonlinear Resonance
,”
J. Microelectromech. Syst.
,
17
, pp.
1082
1093
.10.1109/JMEMS.2008.2003054
23.
Krylov
,
S.
,
Ilic
,
B. R.
,
Schreiber
,
D.
,
Seretensky
,
S.
, and
Craighead
,
H.
,
2008
, “
The Pull-In Behavior of Electrostatically Actuated Bistable Microstructures
,”
J. Micromech. Microeng.
,
18
, p.
055026
.10.1088/0960-1317/18/5/055026
24.
Krylov
,
S.
, and
Dick
,
N.
,
2010
, “
Dynamic Stability of Electrostatically Actuated Initially Curved Shallow Micro Beams
,”
Continuum Mech. Thermodyn.
,
22
, pp.
445
468
.10.1007/s00161-010-0149-6
25.
Das
,
K.
, and
Batra
,
R. C.
,
2009
, “
Pull-In and Snap-Through Instabilities in Transient Deformations of Microelectromechanical Systems
,”
J. Micromech. Microeng.
,
19
, p.
035008
.10.1088/0960-1317/19/3/035008
26.
Elata
,
D.
, and
Abu-Salih
,
S.
,
2005
, “
Analysis of a Novel Method for Measuring Residual Stress in Micro-Systems
,”
J. Micromech. Microeng.
,
15
, pp.
921
927
.10.1088/0960-1317/15/5/004
27.
Elata
,
D.
, and
Abu-Salih
,
S.
,
2006
, “
Analysis of the Electromechanical Buckling of a Prestressed Micro Beam That is Bonded to an Elastic Foundation
,”
J. Mech. Mat. Struct.
,
1
(
5
), pp.
911
923
.10.2140/jomms.2006.1.911
28.
Krylov
,
S.
,
Ilic
,
B. R.
, and
Lulinsky
,
S.
,
2011
, “
Bistability of Curved Microbeams Actuated by Fringing Electrostatic Fields
,”
J. Nonlinear Dynam.
,
66
(
3
), pp.
403
426
.10.1007/s11071-011-0038-y
29.
Younis
,
M. I.
,
Ouakad
,
H. M.
,
Alsaleem
,
F. M.
,
Miles
,
R.
, and
Cui
,
W.
,
2010
Nonlinear Dynamics of MEMS Arches Under Harmonic Electrostatic Actuation
,”
J. Microelectromech. Syst.
,
19
(
3
), pp.
647
656
.10.1109/JMEMS.2010.2046624
30.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
The Dynamic Behavior of MEMS Arch Resonators Actuated Electrically
,”
Int. J. Nonlinear Mech.
,
45
, pp.
704
713
.10.1016/j.ijnonlinmec.2010.04.005
31.
Alkharabsheh
,
S. A.
, and
Younis
,
M. I.
,
2013
, “
The Dynamics of MEMS Arches of Non-Ideal Boundary Conditions
,”
J. Microelectromech. Syst.
(to be published). 10.1109/JMEMS.2012.2226926
32.
Nayfeh
,
A. H.
, and
P. F.
Pai
,
2004
,
Linear and Nonlinear Structural Mechanics
,
Wiley
,
New York
.
33.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
,
Springer
,
New York
.
34.
Gutschmidt
,
S.
,
2010
, “
The Influence of Higher-Order Mode Shapes for Reduced-Order Models of Electrostatically Actuated Microbeams
,”
ASME J. Appl. Mech.
,
77
(
4
), p.
041007
.10.1115/1.4000911
35.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
, pp.
672
680
.10.1109/JMEMS.2003.818069
You do not currently have access to this content.