This article investigates the vibration response of a planetary gear train under excitations of both deterministic and random loads. A lumped parameter model has been used in this investigation and the random excitations are represented by white noise. One version of the stochastic Newmark algorithms is employed to solve for both sample path response and the statistics of the response. The mean and the variance for all state variables are obtained through the same algorithm. The effects of three different levels of noise on the statistics are compared against each other.

References

References
1.
August
,
R.
, and
Kasuba
,
R.
,
1986
, “
Torsional Vibration and Dynamic Loads in a Basic Planetary Gear System
,”
ASME J. Vib., Accoust., Stress, Reliab. Des.
,
108
(
3
), pp.
348
354
.10.1115/1.3269349
2.
Velex
,
P.
, and
Flamand
,
L.
,
1996
, “
Dynamic Response of Planetary Trains to Mesh Parametric Excitation
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
7
13
.10.1115/1.2826860
3.
Abousleiman
,
V.
, and
Velex
,
P.
,
2006
, “
A Hybrid 3D Finite Element/Lumped Parameter Model for Quasi-Static and Dynamic Analyses of Planetary/Epicyclic Gear Sets
,”
Mech. Mach. Theory
,
41
(
6
), pp.
725
748
.10.1016/j.mechmachtheory.2005.09.005
4.
Bahk
,
C. J.
, and
Parker
,
R. G.
,
2011
, “
Analytical Solution for the Nonlinear Dynamics of Planetary Gears
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021007
.10.1115/1.4002392
5.
Sun
,
T.
, and
Hu
,
H.
,
2003
, “
Nonlinear Dynamics of a Planetary Gear System With Multiple Clearances
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1371
1390
.10.1016/S0094-114X(03)00093-4
6.
Wang
,
S.
,
Huo
,
M.
,
Zhang
,
C.
,
Liu
,
J.
,
Song
,
Y.
,
Cao
,
S.
, and
Yang
,
Y.
,
2011
, “
Effect of Mesh Phase on Wave Vibration of Spur Planetary Ring Gear
,”
Eur. J. Mech. A/Solids
,
30
(
6
), pp.
820
827
.10.1016/j.euromechsol.2011.06.004
7.
Guo
,
Y.
, and
Parker
,
R. G.
,
2011
, “
Analytical Determination of Mesh Phase Relations in General Compound Planetary Gears
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1869
1887
.10.1016/j.mechmachtheory.2011.07.010
8.
Nigam
,
N. C.
, and
Narayanan
,
S.
,
Applications of Random Vibrations
(
Springer-Verlag
,
Berlin
,
1994
).
9.
Al-shyyab
,
A.
, and
Kahraman
,
A.
,
2007
, “
A Non-Linear Dynamic Model for Planetary Gear Sets
,”
Proc. IMechE. Part K: J. Multi-Body Dyn.
,
221
(
4
), pp.
567
576
.10.1243/14644193JMBD92
10.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
,
2006
, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
,
302
(
3
), pp.
577
595
.10.1016/j.jsv.2006.11.028
11.
Kloeden
,
P. E.
, and
Platen
,
E.
,
Numerical Solution of Stochastic Differential Equations
(
Springer-Verlag
,
Berlin
,
1992
).
12.
To
,
C. W. S.
,
1986
, “
The Stochastic Central Difference Method in Structural Dynamics
,”
Comput. Struct.
,
23
(
6
), pp.
813
818
.10.1016/0045-7949(86)90250-6
13.
To
,
C. W. S.
,
1988
, “
Recursive Expressions for Random Response of Nonlinear Systems
.”
Comput. Struct.
,
29
(
3
), pp.
163
171
.10.1016/0045-7949(88)90397-5
14.
To
,
C. W. S.
,
1992
, “
A Stochastic Version of the Newmark Family of Algorithms for Discretized Dynamic Systems
,”
Comput. Struct.
,
44
(
3
), pp.
667
673
.10.1016/0045-7949(92)90399-K
15.
Liu
,
M. L.
, and
To
,
C. W. S.
,
1994
, “
Adaptive Time Schemes for Responses of Non-Linear Multi-Degree-of-Freedom Systems Under Random Excitations
,”
Comput. Struct.
,
52
(
3
), pp.
563
571
.10.1016/0045-7949(94)90241-0
16.
Zhang
,
L.
,
Zu
,
J.
, and
Zheng
,
Z.
,
1999
, “
The Stochastic Newmark Algorithm for Random Analysis of Multi-Degree-of-Freedom Nonlinear Systems
,”
Comput. Struct.
,
70
(
5
), pp.
557
568
.10.1016/S0045-7949(98)00203-X
17.
Tootkaboni
,
M.
, and
Brady
,
L. G.
,
2010
, “
Stochastic Direct integration Schemes for Dynamic Systems Subjected to Random Excitations
,”
Probab. Eng. Mech.
,
25
(
2
), pp.
163
171
.10.1016/j.probengmech.2009.10.001
18.
To
,
C. W. S.
,
1989
, “
An Implicit Direct Integrator for Random Response of Multi-Degree-of-Freedom Systems
,”
Comput. Struct.
,
33
(
1
), pp.
73
77
.10.1016/0045-7949(89)90130-2
19.
Bernard
,
P.
, and
Fleury
,
G.
,
2002
, “
Stochastic Newmark Scheme
,”
Probab. Eng. Mech.
,
17
(
1
), pp.
45
61
.10.1016/S0266-8920(01)00010-8
20.
Wirsching
,
P. H.
T, L, P.
, and
Ortiz
,
K.
,
Random Vibration: Theory and Practice
(
Dover
,
New York
,
2006
).
You do not currently have access to this content.