This article investigates the vibration response of a planetary gear train under excitations of both deterministic and random loads. A lumped parameter model has been used in this investigation and the random excitations are represented by white noise. One version of the stochastic Newmark algorithms is employed to solve for both sample path response and the statistics of the response. The mean and the variance for all state variables are obtained through the same algorithm. The effects of three different levels of noise on the statistics are compared against each other.
Issue Section:
Research Papers
References
1.
August
, R.
, and Kasuba
, R.
, 1986
, “Torsional Vibration and Dynamic Loads in a Basic Planetary Gear System
,” ASME J. Vib., Accoust., Stress, Reliab. Des.
, 108
(3
), pp. 348
–354
.10.1115/1.32693492.
Velex
, P.
, and Flamand
, L.
, 1996
, “Dynamic Response of Planetary Trains to Mesh Parametric Excitation
,” ASME J. Mech. Des.
, 118
(1
), pp. 7
–13
.10.1115/1.28268603.
Abousleiman
, V.
, and Velex
, P.
, 2006
, “A Hybrid 3D Finite Element/Lumped Parameter Model for Quasi-Static and Dynamic Analyses of Planetary/Epicyclic Gear Sets
,” Mech. Mach. Theory
, 41
(6
), pp. 725
–748
.10.1016/j.mechmachtheory.2005.09.0054.
Bahk
, C. J.
, and Parker
, R. G.
, 2011
, “Analytical Solution for the Nonlinear Dynamics of Planetary Gears
,” ASME J. Comput. Nonlinear Dyn.
, 6
(2
), p. 021007
.10.1115/1.40023925.
Sun
, T.
, and Hu
, H.
, 2003
, “Nonlinear Dynamics of a Planetary Gear System With Multiple Clearances
,” Mech. Mach. Theory
, 38
(12
), pp. 1371
–1390
.10.1016/S0094-114X(03)00093-46.
Wang
, S.
, Huo
, M.
, Zhang
, C.
, Liu
, J.
, Song
, Y.
, Cao
, S.
, and Yang
, Y.
, 2011
, “Effect of Mesh Phase on Wave Vibration of Spur Planetary Ring Gear
,” Eur. J. Mech. A/Solids
, 30
(6
), pp. 820
–827
.10.1016/j.euromechsol.2011.06.0047.
Guo
, Y.
, and Parker
, R. G.
, 2011
, “Analytical Determination of Mesh Phase Relations in General Compound Planetary Gears
,” Mech. Mach. Theory
, 46
(12
), pp. 1869
–1887
.10.1016/j.mechmachtheory.2011.07.0108.
Nigam
, N. C.
, and Narayanan
, S.
, Applications of Random Vibrations
(Springer-Verlag
, Berlin
, 1994
).9.
Al-shyyab
, A.
, and Kahraman
, A.
, 2007
, “A Non-Linear Dynamic Model for Planetary Gear Sets
,” Proc. IMechE. Part K: J. Multi-Body Dyn.
, 221
(4
), pp. 567
–576
.10.1243/14644193JMBD9210.
Ambarisha
, V. K.
, and Parker
, R. G.
, 2006
, “Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,” J. Sound Vib.
, 302
(3
), pp. 577
–595
.10.1016/j.jsv.2006.11.02811.
Kloeden
, P. E.
, and Platen
, E.
, Numerical Solution of Stochastic Differential Equations
(Springer-Verlag
, Berlin
, 1992
).12.
To
, C. W. S.
, 1986
, “The Stochastic Central Difference Method in Structural Dynamics
,” Comput. Struct.
, 23
(6
), pp. 813
–818
.10.1016/0045-7949(86)90250-613.
To
, C. W. S.
, 1988
, “Recursive Expressions for Random Response of Nonlinear Systems
.” Comput. Struct.
, 29
(3
), pp. 163
–171
.10.1016/0045-7949(88)90397-514.
To
, C. W. S.
, 1992
, “A Stochastic Version of the Newmark Family of Algorithms for Discretized Dynamic Systems
,” Comput. Struct.
, 44
(3
), pp. 667
–673
.10.1016/0045-7949(92)90399-K15.
Liu
, M. L.
, and To
, C. W. S.
, 1994
, “Adaptive Time Schemes for Responses of Non-Linear Multi-Degree-of-Freedom Systems Under Random Excitations
,” Comput. Struct.
, 52
(3
), pp. 563
–571
.10.1016/0045-7949(94)90241-016.
Zhang
, L.
, Zu
, J.
, and Zheng
, Z.
, 1999
, “The Stochastic Newmark Algorithm for Random Analysis of Multi-Degree-of-Freedom Nonlinear Systems
,” Comput. Struct.
, 70
(5
), pp. 557
–568
.10.1016/S0045-7949(98)00203-X17.
Tootkaboni
, M.
, and Brady
, L. G.
, 2010
, “Stochastic Direct integration Schemes for Dynamic Systems Subjected to Random Excitations
,” Probab. Eng. Mech.
, 25
(2
), pp. 163
–171
.10.1016/j.probengmech.2009.10.00118.
To
, C. W. S.
, 1989
, “An Implicit Direct Integrator for Random Response of Multi-Degree-of-Freedom Systems
,” Comput. Struct.
, 33
(1
), pp. 73
–77
.10.1016/0045-7949(89)90130-219.
Bernard
, P.
, and Fleury
, G.
, 2002
, “Stochastic Newmark Scheme
,” Probab. Eng. Mech.
, 17
(1
), pp. 45
–61
.10.1016/S0266-8920(01)00010-820.
Wirsching
, P. H.
T, L, P.
, and Ortiz
, K.
, Random Vibration: Theory and Practice
(Dover
, New York
, 2006
).Copyright © 2013 by ASME
You do not currently have access to this content.