The kinematics of the transverse motion of a swimming fish are analyzed using a complex modal decomposition. Cinematographic images of a swimming whiting (Gadus merlangus) were obtained from the work of Sir James Gray (1933, “Studies in Animal Locomotion III. The Propulsive Mechanism of the Whiting (Gadus merlangus),” J. Exp. Biol., 10, pp. 391–402). The position of the midline for each image was determined and used to produce planar positions of virtual markers distributed along the midline of the fish. Transverse deflections of each virtual marker were then used for the complex orthogonal decomposition of modes. This method was applied to images of a whiting before and after amputation in a Newtonian frame of reference and an “anterior-body-fixed” frame as well. The fish motions were well represented by a single complex mode, which was then used as a modal filter. The extracted mode and modal coordinate were used to estimate the frequency, wavelength, and wave speed. The amputated fish was compared to the nonamputated fish, and the amount of traveling in the respective waveforms was quantified. The dominant complex mode shape and the estimated modal frequency were employed to reanimate the fish motion.

References

References
1.
Gray
,
J.
,
1933
,“
Studies in Animal Locomotion I. The Movement of Fish With Special Reference to the Eel
,”
J. Exp. Biol.
,
10
, pp.
88
111
.
2.
Gray
,
J.
,
1933
, “
Studies in Animal Locomotion III. The Propulsive Mechanism of the Whiting (Gadus merlangus)
,”.
J. Exp. Biol.
,
10
, pp.
391
402
.
3.
Morgansen
,
K. A.
,
Triplett
,
B. I.
, and
Klein
,
D. J.
,
2007
, “
Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles
,”
IEEE T. Robot.
,
23
(
6
), pp.
1184
1199
.10.1109/LED.2007.911625
4.
Hultmark
,
M.
,
Leftwich
,
M.
, and
Smits
,
A. J.
,
2007
, “
Flowfield Measurements in the Wake of a Robotic Lamprey
,”
Exp. Fluids
,
43
, pp.
683
690
.10.1007/s00348-007-0412-1
5.
McMasters
,
R. L.
,
Grey
,
C. P.
,
Sollock
,
J. M.
,
Mukherjee
,
R.
,
Benard
,
A.
, and
Diaz
,
A. R.
,
2008
, “
Comparing the Mathematical Models of Lighthill to the Performance of a Biomimetic Fish
,”
Bioinspir. Biomim.
,
3
(
1
), p.
016002
.10.1088/1748-3182/3/1/016002
6.
Epps
,
B. P.
,
Alvarado
,
P. V. Y.
,
Youcef-Toumi
,
K.
, and
Techet
,
A. H.
,
2009
, “
Swimming Performance of a Biomimetic Compliant Fish-Like Robot
,”
Exp. Fluids
,
47
(
6
), pp.
927
939
.10.1007/s00348-009-0684-8
7.
Strefling
,
P.
,
Hellum
,
A.
, and
Mukherjee
,
R.
,
2012
, “
Modeling, Simulation and Performance of a Synergistically Propelled Ichthyoid
,”
IEEE/ASME Trans. Mechatron
,
17
(1)
, pp.
36
45
.10.1109/TMECH.2011.2172950
8.
Feeny
,
B. F.
,
2008
, “
A Complex Orthogonal Decomposition for Wave Motion Analysis
,”
J. Sound Vib.
,
310
(
1–2
), pp.
77
90
.10.1016/j.jsv.2007.07.047
9.
Lumley
,
J. L.
,
1970
,
Stochastic Tools in Turbulence
,
Academic Press
,
New York
.
10.
Alexander
,
M. M.
,
1983
, “
The History of Fish Mechanics
,”
Fish Biomechanics
,
Webb
,
P. W.
, and
Weihs
,
D.
eds.,
Praeger
,
New York
, pp.
1
35
.
11.
Lindsey
,
C. C.
,
1978
, “
Form, Function, and Locomotory Habits in Fish
,”
Fish Physiology, Locomotion
, Vol.
7
,
Hoar
,
W. S.
, and
Randall
,
D. J.
, eds.,
Academic Press
,
New York
, pp.
1
100
.
12.
Breder
,
C. M.
,
1926
, “
The Locomotion of Fishes
,”
Zoologica
,
4
(
5
), pp.
159
297
.
13.
Webb
,
P. W.
,
1978
, “
Hydrodynamics: Nonscombroid Fish
,”
Fish Physiology, Locomotion
, Vol.
7
,
Hoar
,
W. S.
, and
Randall
,
D. J.
eds.,
Academic Press
,
New York
, pp.
190
315
.
14.
Videler
,
J. J.
,
1993
, Fish Swimming, Vol. Fish and Fisheries Series 10, Chapman and Hall, London.
15.
Gray
,
J.
,
1933
, “
Studies in Animal Locomotion II. The Relationship Between Waves of Muscular Contraction and the Propulsive Mechanism of the Eel
,”
J. Exp. Biol.
,
10
, pp.
386
390
.
16.
Videler
,
J. J.
, and
Hess
,
F.
,
1984
, “
Fast Continuous Swimming of Two Pelagic Predators, Saithe (Pollachius Virens) and Mackerel (Scomber Scombrus): A Kinematic Analysis
,”
J. Exp. Biol.
,
109
, pp.
209
228
.
17.
Gillis
,
G. B.
,
1996
, “
Undulatory Locomotion in Elongate Aquatic Vertebrates: Anguilliform Swimming Since Sir James Gray
,”
Amer. Zool.
,
36
, pp.
656
665
.10.1093/icb/36.6.656
18.
Wolfgang
,
M. J.
,
Anderson
,
J. M.
,
Grosenbaugh
,
M. A.
,
Yue
,
D. K. P.
, and
Triantafyllou
,
M. S.
,
1999
, “
Near-Body Flow Dynamics in Swimming Fish
,”
J. Exp. Biol.
,
202
(
17
), pp.
2303
2327
.
19.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2008
, “
Numerical Investigation of the Hydrodynamics of Carangiform Swimming in the Transitional and Inertial Flow Regimes
,”
J. Exp. Biol.
,
211
, pp.
1541
1588
.10.1242/jeb.015644
20.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2009
, “
Numerical Investigation of the Hydrodynamics of Anguilliform Swimming in the Transitional and Inertial Flow Regimes
,”
J. Exp. Biol.
,
212
, pp.
576
592
.10.1242/jeb.025007
21.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2010
, “
On the Role of Form and Kinematics on the Hydrodynamics of Self-Propelled Body/Caudal Fin Swimming
,”
J. Exp. Biol.
,
213
(
1
), pp.
89
107
.10.1242/jeb.030932
22.
Tytell
,
E. D.
, and
Lauder
,
G. V.
,
2004
, “
The Hydrodynamics of Eel Swimming: I. Wake Structure
,”
J. Exp. Biol.
,
207
, pp.
1825
1841
.10.1242/jeb.00968
23.
Videler
,
J. J.
, and
Wardle
,
C. S.
,
1991
, “
Fish Swimming Stride by Stride: Speed Limits and Endurance
,”
Rev. Fish Biol. Fisher.
,
1
(
1
), pp.
23
40
.10.1007/BF00042660
24.
Feeny
,
B. F.
,
Sternberg
,
P. W.
,
Cronin
,
C. J.
, and
Coppola
,
C. A.
,
2012
, “
Complex Modal Decomposition Applied to Nematode Posturing
,”
ASME Computat. Nonlinear Dynam.
(accepted).
25.
Feeny
,
B. F.
,
2012
, “
Complex Modal Decomposition for Estimating Wave Properties in One-Dimensional Media
,”
ASME J. Vib. Acoust.
(accepted).
26.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
25
, pp.
539
575
.10.1146/annurev.fl.25.010193.002543
27.
Cusumano
,
J. P.
, and
Bai
,
B.-Y.
,
1993
, “
Period-Infinity Periodic Motions, Chaos and Spatial Coherence in a 10 Degree of Freedom Impact Oscillator
,”
Chaos Soliton Fract.
,
3
(
5
), pp.
515
535
.10.1016/0960-0779(93)90003-J
28.
Cusumano
,
J. P.
,
Sharkady
,
M. T.
, and
Kimble
,
B. W.
,
1994
, “
Experimental Measurements of Dimensionality Spatial Coherence in the Dynamics of a Chaotic Flexible-Beam Impact Oscillator
,”
Philos. T. R. Soc. S-A
, (
1683
), pp.
421
438
.10.1098/rsta.1994.0052
29.
Epureanu
,
B. I.
,
Tang
,
L. S.
, and
Paidoussis
,
M. P.
,
2004
, “
Exploiting Chaotic Dynamics for Detecting Parametric Variations in Aeroselastic Systems
,”
AIAA J.
,
42
(
4
), pp.
728
735
.10.2514/1.9556
30.
FitzSimons
,
P. M.
, and
Rui
,
C.
,
1993
, “
Determining Low Dimensional Models of Distributed Systems
,”
Advances in Robust and Nonlinear Control Systems
,
ASME-DSC53
, pp.
9
15
.
31.
Kerschen
,
G.
,
Golinval
,
J. C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2005
, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dynam.
,
41
(
1–3
), pp.
147
169
.10.1007/s11071-005-2803-2
32.
Yasuda
,
K.
, and
Kamiya
,
K.
,
1997
, “
Experimental Identification Technique of Nonlinear Beams in Time Domain
,”
ASME Design Engineering Technical Conferences, on CD-ROM
.
33.
Ma
,
X.
,
Azeez
,
M. A. F.
, and
Vakakis
,
A. F.
,
2000
, “
Nonlinear Normal Modes and Nonparametric System Identification of Nonlinear Oscillators
,”
Mech. Syst. Signal Process.
,
14
(
1
), pp.
37
48
.10.1006/mssp.1999.1267
34.
Liang
,
Y. C.
,
Lee
,
H. P.
,
Lim
,
S. P.
,
Lin
,
W. Z.
,
Lee
,
K. H.
, and
Wu
,
C. G.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
.10.1006/jsvi.2001.4041
35.
Feeny
,
B. F.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
(
4
), pp.
607
616
.10.1006/jsvi.1997.1386
36.
Feeny
,
B. F.
,
2002
, “
On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems
,”
ASME J. Vib. Acoust.
,
124
(
1
), pp.
157
160
.10.1115/1.1421352
37.
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2002
, “
Physical Interpretation of the Proper Orthogonal Modes Using the Singular Value Decomposition
,”
J. Sound Vib.
,
249
(
5
), pp.
849
865
.10.1006/jsvi.2001.3930
38.
Feeny
,
B. F.
, and
Liang
,
Y.
,
2003
, “
Interpreting Proper Orthogonal Modes in Randomly Excited Vibration Systems
,”
J. Sound Vib.
,
265
(
5
), pp.
953
966
.10.1016/S0022-460X(02)01265-8
39.
Ting
,
S. C.
, and
Yang
,
J. T.
,
2009
, “
Extracting Energetically Dominant Flow Features in a Complicated Fish Wake Using Singular-Value Decomposition
,”
Phys. Fluids
,
21
(
4
), p.
041901
.10.1063/1.3122802
40.
Feng
,
Z.
,
Cronin
,
C. J
,
Wittig
,
J. H., Jr.
,
Sternberg
,
P. W.
, and
Schafer
,
W. R.
,
2004
, “
An Imaging System for Standardized Quantitative Analysis of C. elegans Behavior
,”
BMC Bioinformatics
,
5
, p.
115
.10.1186/1471-2105-5-115
41.
Cronin
,
C. J.
,
Mendel
,
J. E.
,
Mukhtar
,
S.
,
Kim
,
Y. M.
,
Stirbl
,
R. C.
,
Bruck
,
J.
, and
Sternberg
,
P. W.
,
2005
, “
An Automated System for Measuring Parameters of Nematode Sinusoidal Movement
,”
BMC Genetics
,
6
, p. 5.
42.
Oppenheim
,
A. V.
, and
Schafer
,
R. W.
,
1989
,
Discrete-Time Signal Processing
,
Prentice Hall
,
Englewood Cliffs, NJ
.
43.
Meirovitch
,
L.
,
1997
,
Principles and Techniques in Vibrations
,
Prentice Hall, Upper Saddle River, NJ
.
44.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
,
Ohio State University Press
, printed at the Universities Press, Belfast.
You do not currently have access to this content.