Dynamic sensing is essential to effective closed-loop control of precision structures. In a centrosymmetric crystal subjected to inhomogeneous deformation, when piezoelectricity is absent, only the strain gradient contributes to the polarization known as the “flexoelectricity.” In this study, a flexoelectric layer is laminated on a circular ring shell to monitor the natural modal signal distributions. Due to the strain gradient characteristic, only the bending strain component contributes to the output signal. The total flexoelectric signal consists of two components respectively induced by the transverse modal oscillation and the circumferential modal oscillation. Analog to the signal analysis, the flexoelectric sensitivity is also studied in two forms: a transverse sensitivity induced by the transverse modal oscillation and a transverse sensitivity induced by the circumferential modal oscillation. Analysis data suggest that the transverse modal oscillation dominates the flexoelectric signal generation and its magnitude/distribution shows nearly the same as the total signal. Furthermore, voltage signals and signal sensitivities are evaluated with respect to ring mode, sensor segment size, ring thickness, and ring radius in case studies. The total signal increases with mode numbers and sensor thicknesses, decreases with sensor segment size and ring radii, and remains the same with different ring thicknesses.

References

References
1.
Kogan
,
M. S.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Sov. Phys. Solid State
,
5
(
10
), pp.
2069
2070
.
2.
Tagantsev
,
K.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), pp.
5883
5889
.10.1103/PhysRevB.34.5883
3.
Indenbom
,
V. L.
,
Loginov
,
E. B.
, and
Osipov
,
M. A.
,
1981
, “
Flexoelectric Effect and Crystal-Structure
,”
Kristallografiya
,
26
(6), pp.
1157
1162
.
4.
Cross
,
L. E.
,
2006
, “
Flexoelectric Effects: Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients
,”
J. Mater. Sci.
,
41
(
1
), pp.
53
63
.10.1007/s10853-005-5916-6
5.
Maskevich
,
V. S.
, and
Tolpygo
,
K. V.
,
1957
, “
Investigation of Long-Wavelength Vibrations of Diamond-Type Crystals With an Allowance for Long-Range Forces
,”
Sov. Phys. JETP
,
5
, pp.
435
437
.
6.
Bursian
,
E. V.
, and
Trunov
,
N. N.
,
1974
, “
Nonlocal Piezo-Effect
,”
Fiz. Tverd. Tela
,
16
(
4
), pp.
1187
1190
.
7.
Marvan
,
M.
, and
Havránek
,
A.
,
1988
, “
Flexoelectric Effect in Elastomers
,”
Prog. Colloid Polym. Sci.
,
78
, pp.
33
36
.10.1007/BFb0114332
8.
Ma
,
W.
, and
Cross
,
L. E.
,
2001
, “
Observation of the Flexoelectric Effect in Relaxor Pb(Mg1/3Nb2/3)O3 Ceramics
,”
Appl. Phys. Lett.
,
78
(
19
), pp.
2920
2921
.10.1063/1.1356444
9.
Ma
,
W. H.
, and
Cross
,
L. E.
,
2005
, “
Flexoelectric Effect in Ceramic Lead Zirconate Titanate
,”
Appl. Phys. Lett.
,
86
(
7
), p.
072905
.10.1063/1.1868078
10.
Ma
,
W.
, and
Cross
,
L. E.
,
2002
, “
Flexoelectric Polarization of Barium Strontium Titanate in the Paraelectric State
,”
Appl. Phys. Lett.
,
81
(
18
), pp.
3440
3442
.10.1063/1.1518559
11.
Zubko
,
P.
,
Catalan
,
G.
,
Buckley
,
A.
,
Welche
,
P. R. L.
, and
Scott
,
J. F.
,
2007
, “
Strain-Gradient-Induced Polarization in SrTiO3 Single Crystals
,”
Phys. Rev. Lett.
,
99
(
16
), p.
167601
.10.1103/PhysRevLett.99.167601
12.
Catalan
,
G.
,
Sinnamon
,
L. J.
, and
Gregg
,
J. M.
,
2004
, “
The Effect of Flexoelectricity on the Dielectric Properties of Inhomogeneously Strained Ferroelectric Thin Films
,”
J. Phys.: Condens. Matter
,
16
(
13
), pp.
2253
2264
.10.1088/0953-8984/16/13/006
13.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green's Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
.10.1103/PhysRevB.74.014110
14.
Kalinin
,
S. V.
, and
Meunier
,
V.
,
2008
, “
Electronic Flexoelectricity in Low-Dimensional Systems
,”
Phys. Rev. B
,
77
(
3
), p.
033403
.10.1103/PhysRevB.77.033403
15.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(
12
), p.
125424
.10.1103/PhysRevB.77.125424
16.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Dramatic Enhancement in Energy Harvesting for a Narrow Range of Dimensions in Piezoelectric Nanostructures
,”
Phys. Rev. B
,
78
(
12
), p.
121407
.10.1103/Physrevb.79.159901
17.
Fousek
,
J.
,
Cross
,
L. E.
, and
Litvin
,
D. B.
,
1999
, “
Possible Piezoelectric Composites Based on the Flexoelectric Effect
,”
Mater. Lett.
,
39
(
5
), pp.
287
291
.10.1016/S0167-577X(99)00020-8
18.
Zhu
,
W. Y.
,
Fu
,
J. Y.
,
Li
,
N.
, and
Cross
,
L.
,
2006
, “
Piezoelectric Composite Based on the Enhanced Flexoelectric Effects
,”
Appl. Phys. Lett.
,
89
(
19
), p.
192904
.10.1063/1.2382740
19.
Tzou
,
H. S.
,
Bao
,
Y.
, and
Venkayya
,
V. B.
,
1996
, “
Study of Segmented Transducers Laminated on Cylindrical Shells, Part 1: Sensor Patches
,”
J. Sound Vib.
,
197
(
2
), pp.
207
224
.10.1006/jsvi.1996.0526
20.
Howard
,
R. V.
,
Chai
,
W. K.
, and
Tzou
,
H. S.
,
2001
, “
Modal Voltages of Linear and Nonlinear Structures Using Distributed Artificial Neurons
,”
Mech. Syst. Signal Process.
,
15
(
3
), pp.
629
640
.10.1006/mssp.2000.1341
21.
Tzou
,
H. S.
, and
Chou
,
C. S.
,
2001
, “
Sensors and Actuators
,”
Encyclopedia of Vibration
,
S. G.
Braun
, D. J. Ewins, and S. S. Rao, eds.,
Academic Press
,
London
, pp.
1134
1144
.
22.
Tzou
,
H. S.
,
Smithmaitrie
,
P.
, and
Ding
,
J. H.
,
2002
, “
Sensor Electromechanics and Distributed Signal Analysis of Piezo(Electric)–Elastic Spherical Shells
,”
Mech. Syst. Signal Process.
,
16
(
2–3
), pp.
185
199
.10.1006/mssp.2001.1458
23.
Tzou
,
H. S.
, and
Wang
,
D. W.
,
2002
, “
Micro-Sensing Characteristics and Modal Voltages of Piezoelectric Laminated Linear and Nonlinear Toroidal Shells
,”
J. Sound Vib.
,
254
(
2
), pp.
203
218
.10.1006/jsvi.2001.4045
24.
Tzou
,
H. S.
, and
Ding
,
J. H.
,
2004
, “
Distributed Modal Voltages of Nonlinear Paraboloidal Shells With Distributed Neurons
,”
ASME J. Vib. Acoust.
,
126
(
1
), pp.
47
53
.10.1115/1.1640359
25.
Tzou
,
H. S.
,
Chai
,
W. K.
, and
Wang
,
D. W.
,
2003
, “
Modal Voltages and Micro-Signal Analysis of Conical Shells of Revolution
,”
J. Sound Vib.
,
260
(
4
), pp.
589
609
.10.1016/S0022-460X(02)00956-2
26.
Chai
,
W. K.
,
Smithmaitrie
,
P.
, and
Tzou
,
H. S.
,
2004
, “
Neural Potentials and Micro-Signals of Nonlinear Deep and Shallow Conical Shells
,”
Mech. Syst. Signal Process.
,
18
(
4
), pp.
959
975
.10.1016/j.ymssp.2003.10.006
27.
Yue
,
H. H.
,
Deng
,
Z. Q.
, and
Tzou
,
H. S.
,
2008
, “
Spatially Distributed Modal Signals of Free Shallow Membrane Shell Structronic System
,”
J. Commun. Nonlinear Sci. Numer. Simul.
,
13
(
9
), pp.
2041
2050
.10.1016/j.cnsns.2007.03.022
28.
Li
,
H.
,
Chen
,
Z. B.
, and
Tzou
,
H. S.
,
2010
, “
Torsion and Transverse Sensing of Conical Shells
,”
Mech. Syst. Signal Process.
,
24
(
7
), pp.
2235
2249
.10.1016/j.ymssp.2010.05.004
29.
Tzou
,
H. S.
,
Zhong
,
J. P.
, and
Natori
,
M.
,
1993
, “
Sensor Mechanics of Distributed Shell Convolving Sensors Applied to Flexible Rings
,”
ASME J. Vib. Acoust.
,
115
(
1
), pp.
40
46
.10.1115/1.2930312
30.
Soedel
,
W.
,
1993
,
Vibrations of Shells and Plates
,
M. Dekker
,
New York
.
31.
Tzou
,
H. S.
,
1993
,
Piezoelectric Shells: Distributed Sensing & Control
,
Kluwer Academic Publishers
,
Dordrecht, Germany
.
32.
Kim
,
W.
, and
Chung
,
J.
,
2002
, “
Free Non-Linear Vibration of a Rotating Thin Ring With the In-Plane and Out-of-Plane Motions
,”
J. Sound Vib.
,
258
(
1
), pp.
167
178
.10.1006/jsvi.2002.5104
33.
Tzou
,
H. S.
,
Zhong
,
J. P.
, and
Hollkamp
,
J. J.
,
1994
, “
Spatially Distributed Orthogonal Piezoelectric Shell Actuators Theory and Applications
,”
J. Sound Vib.
,
177
(
3
), pp.
363
378
.10.1006/jsvi.1994.1440
34.
Lin
,
Y. S.
,
Chuang
,
C. C.
,
Chu
,
C. C.
, and
Tzou
,
H. S.
,
2009
, “
Modal Sensitivities, Spatial Signal Distribution and Average of Segmented Ring Sensors
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
(IDETC/CIE2009),
San Diego, CA
, August 30-September 2, pp.
135
144
.
35.
Yang
,
J. S.
,
Fang
,
H. Y.
, and
Jiang
,
Q.
,
2000
, “
A Vibrating Piezoelectric Ceramic Shell as a Rotation Sensor
,”
Smart Mater. Struct.
,
9
(
4
), pp.
445
451
.10.1088/0964-1726/9/4/307
You do not currently have access to this content.