This paper presents a method to develop a low-order aeroelastic model that qualitatively captures some of the phenomena experienced by launch vehicles, suitable for use in preliminary controller design. Equations of motion for the two-dimensional dynamics are derived by treating the vehicle as a beam with a gimbaled nozzle attached at the aft end. The flexible-body dynamics are kinematically described using a modal representation. An aerodynamic model focuses on flow separations at diameter transitions in the transonic regime that can lead to lengthwise variations in the applied aerodynamic force. Additionally, convective effects are modeled that lead to time lag in the aerodynamic forces. The equations of motion are tenth order when neglecting convective effects and twelfth order when including convective effects. The model demonstrates some of the possible coupling that occurs between rigid-body, flexible-body, and aerodynamic states. For representative parameter values, the aeroelastic coupling can destabilize the flexible-body motion. The resulting linearized model is not fully controllable, however, is stabilizable.

References

References
1.
Whorton
,
M. S.
,
Hall
,
C. E.
, and
Cook
,
S. A.
,
2007
, “
Ascent Flight Control and Structural Interaction for the Ares-I Crew Launch Vehicle
,”
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Honolulu, HI, April 23–26, Paper No.
AIAA
2007-1780.10.2514/6.2007-1780
2.
Hall
,
C.
,
Lee
,
C.
,
Jackson
,
M.
,
Whorton
,
M.
,
West
,
M.
,
Brandon
,
J.
,
Hall
,
R. A.
,
Jang
,
J.-W.
,
Bedrossian
,
N.
,
Compton
,
J.
, and
Rutherford
,
C.
,
2008
, “
Ares I Flight Control System Overview
,”
AIAA Guidance, Navigation, and Control Conference
, Honolulu, HI, April 18–21, Paper No.
AIAA
2008-6287.10.2514/6.2008-6287
3.
Gupta
,
K. K.
,
1996
, “
Development of a Finite Element Aeroelastic Analysis Capability
,”
J. Aircr.
,
33
(
5
), pp.
995
1002
.10.2514/3.47046
4.
Friedmann
,
P. P.
,
McNamara
,
J. J.
,
Thuruthimattam
,
B. J.
, and
Nydick
,
I.
,
2004
, “
Aeroelastic Analysis of Hypersonic Vehicles
,”
J. Fluids Struct.
,
19
(
5
), pp.
681
712
.10.1016/j.jfluidstructs.2004.04.003
5.
McNamara
,
J. J.
,
Friedmann
,
P. P.
,
Powell
,
K. G.
,
Thuruthimattam
,
B. J.
, and
Bartels
,
R. E.
,
2008
, “
Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow
,”
AIAA J.
,
46
(
10
), pp.
2591
2610
.10.2514/1.36711
6.
McNamara
,
J. J.
and
Friedmann
,
P. P.
,
2011
, “
Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow: Past, Present, and Future
,”
AIAA J.
,
49
(
6
), pp.
1089
1122
.10.2514/1.J050882
7.
Bartels
,
R. E.
,
2008
, “
Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center
,”
NATO RTO Specialists Meeting on Advanced Aeroelasticity, Paper No. AVT-154-003
.
8.
Bartels
,
R. E.
,
Vatsa
,
V.
,
Carlson
,
J.-R.
,
Park
,
M.
, and
Mineck
,
R. E.
,
2010
, “
FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle
,”
AIAA Applied Aerodynamics Conference
, Chicago, June 28–July 1, Paper No.
AIAA
2010-4372.10.2514/6.2010-4372
9.
Bartels
,
R. E.
,
Chwalowski
,
P.
,
Massey
,
S. J.
,
Heeg
,
J.
,
Wieseman
,
C. D.
, and
Mineck
,
R. E.
,
2010
, “
Computational Aeroelastic Analysis of the Ares Launch Vehicle During Ascent
,”
AIAA Applied Aerodynamics Conference
, Chicago, June 28–July 1, Paper No.
AIAA
2010-4374.10.2514/6.2010-4374
10.
Dowell
,
E. H.
and
Hall
,
K. C.
,
2001
, “
Modeling of Fluid-Structure Interaction
,”
Ann. Rev. Fluid Mech.
,
33
, pp.
445
490
.10.1146/annurev.fluid.33.1.445
11.
Dowell
,
E.
,
Thomas
,
J.
, and
Hall
,
K.
,
2004
, “
Transonic Limit Cycle Oscillation Analysis Using Reduced Order Aerodynamic Models
,”
J. Fluids Struct.
,
19
(
1
), pp.
17
27
.10.1016/j.jfluidstructs.2003.07.018
12.
Silva
,
W.
and
Bartels
,
R.
,
2004
, “
Development of Reduced-Order Models for Aeroelastic Analysis and Flutter Prediction Using the CFL3Dv6.0 Code
,”
J. Fluids Struct.
,
19
(
6
), pp.
729
745
.10.1016/j.jfluidstructs.2004.03.004
13.
Silva
,
W.
,
2005
, “
Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunities
,”
Nonlinear Dyn.
,
39
, pp.
25
62
.10.1007/s11071-005-1907-z
14.
Lieu
,
T.
,
Farhat
,
C.
, and
Lesoinne
,
M.
,
2006
, “
Reduced-Order Fluid/Structure Modeling of a Complete Aircraft Configuration
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
5730
5742
.10.1016/j.cma.2005.08.026
15.
Lieu
,
T.
and
Farhat
,
C.
,
2007
, “
Adaptation of Aeroelastic Reduced-Order Models and Application to an F-16 Configuration
,”
AIAA J.
,
46
(
6
), pp.
1244
1257
.10.2514/1.24512
16.
Mastroddi
,
F.
,
Stella
,
F.
,
Polli
,
G. M.
, and
Giangi
,
M.
,
2008
, “
Sensitivity Analysis for the Dynamic Aeroelasticity of a Launch Vehicle
,”
J. Spacecr. Rockets
,
45
(
5
), pp.
999
1009
.10.2514/1.30725
17.
Silva
,
W. A.
,
2008
, “
Simultaneous Excitation of Multiple-Input/Multiple-Output CFD-Based Unsteady Aerodynamic Systems
,”
J. Aircr.
,
45
(
4
), pp.
1267
1274
.10.2514/1.34328
18.
Silva
,
W. A.
,
Vatsa
,
V. N.
, and
Biedron
,
R. T.
,
2010
, “
Reduced-Order Models for the Aeroelastic Analysis of Ares Launch Vehicles
,”
AIAA Applied Aerodynamics Conference
, Chicago, June 28–July 1, Paper No.
AIAA
2010-4375.10.2514/6.2010-4375
19.
Sekula
,
M. K.
,
Piatak
,
D. J.
, and
Rausch
,
R. D.
,
2010
, “
Analysis of a Transonic Alternating Flow Phenomenon Observed During Ares Crew Launch Vehicle Wind Tunnel Tests
,”
AIAA Applied Aerodynamics Conference
, Chicago, June 28–July 1, Paper No.
AIAA
2010-4370.10.2514/6.2010-4370
20.
Ericsson
,
L.-E.
, and
Reding
,
J. P.
,
1965
, “
Analysis of Flow Separation Effects on the Dynamics of a Large Space Booster
,”
J. Spacecr. Rockets
,
2
(
4
), pp.
481
490
.10.2514/3.28216
21.
Ericsson
,
L. E.
,
1967
, “
Aeroelastic Instability Caused by Slender Payloads
,”
J. Spacecr. Rockets
,
4
(
1
), pp.
65
73
.10.2514/3.28811
22.
Reding
,
J. P.
and
Ericsson
,
L. E.
,
1995
, “
Hammerhead and Nose-Cylinder-Flare Aeroelastic Stability Revisited
,”
J. Spacecr. Rockets
,
32
(
1
), pp.
55
59
.10.2514/3.26574
23.
Ericsson
,
L. E.
,
1997
, “
Hammerhead Wake Effects on Elastic Vehicle Dynamics
,”
J. Spacecr. Rockets
,
34
(
2
), pp.
145
151
.10.2514/2.3193
24.
Dotson
,
K. W.
,
Baker
,
R. L.
, and
Sako
,
B. H.
,
1998
, “
Launch Vehicle Self-Sustained Oscillation From Aeroelastic Coupling—Part I: Theory
,”
J. Spacecr. Rockets
,
35
(
3
), pp.
365
373
.10.2514/2.3336
25.
Dotson
,
K. W.
,
Baker
,
R. L.
, and
Bywater
,
R. J.
,
1998
, “
Launch Vehicle Self-Sustained Oscillation From Aeroelastic Coupling—Part II: Analysis
,”
J. Spacecr. Rockets
,
35
(
3
), pp.
374
379
.10.2514/2.3337
26.
Dotson
,
K. W.
,
Baker
,
R. L.
, and
Sako
,
B. H.
,
2000
, “
Launch Vehicle Buffeting With Aeroelastic Coupling Effects
,”
J. Fluids Struct.
,
14
, pp.
1145
1171
.10.1006/jfls.2000.0316
27.
Ericsson
,
L. E.
,
2001
, “
Unsteady Flow Separation Can Endanger the Structural Integrity of Aerospace Launch Vehicles
,”
J. Spacecr. Rockets
,
38
(
2
), pp.
168
179
.10.2514/2.3690
28.
Heeg
,
J.
,
Gilbert
,
M. G.
, and
Pototzky
,
A. S.
,
1993
, “
Active Control of Aerothermoelastic Effects for a Conceptual Hypersonic Aircraft
,”
J. Aircr.t
,
30
(
4
), pp.
453
458
.10.2514/3.56890
29.
Zeiler
,
T. A.
,
McGhee
,
D.
, and
Brunty
,
J. A.
,
1999
, “
Preliminary Static Aeroelastic Analysis of Reusable Launch Vehicle Stability and Control Derivatives
,”
J. Spacecr. Rockets
,
36
(
1
), pp.
67
74
.10.2514/2.3434
30.
Baldelli
,
D. H.
,
Chen
,
P. C.
, and
Panza
,
J.
,
2006
, “
Unified Aeroelastic and Flight Dynamic Formulation Via Rational Function Approximations
,”
J. Aircr.
,
43
(
3
), pp.
763
772
.10.2514/1.16620
31.
Bolender
,
M. A.
and
Doman
,
D. B.
,
2007
, “
Nonlinear Longitudinal Dynamical Model of an Air-Breathing Hypersonic Vehicle
,”
J. Spacecr. Rockets
,
44
(
2
), pp.
374
387
.10.2514/1.23370
32.
Falkiewicz
,
N. J.
,
Cesnik
,
C. E. S.
,
Bolender
,
M. A.
, and
Doman
,
D. B.
,
2009
, “
Thermoelastic Formulation of a Hypersonic Vehicle Control Surface for Control-Oriented Simulation
,”
AIAA Guidance, Navigation, and Control Conference
, Chicago, August 10–13, Paper No.
AIAA
2009-628410.2514/6.2009-6284.
33.
Frendreis
,
S. G. V.
and
Cesnik
,
C. E. S.
,
2010
, “
3D Simulation of Flexible Hypersonic Vehicles
,”
AIAA Atmospheric Flight Mechanics Conference
, Toronto, Canada, August 2–5, Paper No.
AIAA
2010-8229.10.2514/6.2010-8229
34.
Blevins
,
R. D.
,
1979
,
Formulas for Natural Frequency and Mode Shape
,
Krieger
,
Malabar, FL
, Sect. 8.1.2.
35.
Baruh
,
H.
,
1999
,
Analytical Dynamics
,
McGraw-Hill
,
New York
.
36.
Ogata
,
K.
,
2009
,
Modern Control Engineering
,
5th ed.
,
Prentice Hall
,
New York
.
You do not currently have access to this content.