Transient dynamics of centrifugal pendulum vibration absorbers, which are used for reducing torsional vibrations in rotating machines, are investigated using analysis and simulations of a dynamical model. These absorbers are being implemented in automotive engines to smooth vibrations and aid with fuel saving technologies, such as cylinder deactivation and torque converter lockup. In order for the absorbers to operate effectively with minimal mass, they must be designed to accommodate large amplitude, nonlinear responses, and in automotive engines they will experience a variety of transient environments. Here we consider the most severe transient environment, that of sudden activation near resonance, which leads to beating behavior of a nonlinear oscillator coupled to a driven rotor. An approximate method for predicting the percent overshoot of the beating transient response is derived, based on perturbation analysis of the system equations of motion. The main result is expressed in terms of the system and excitation parameters, and is found to accurately predict results from direct simulations of the model equations of motion. It is shown that absorbers with near-tautochronic paths behave much like linear absorbers, and when lightly damped and start from small initial conditions, they have an overshoot close to 100%. For absorbers with softening paths, such as the commonly used circular path absorbers, the overshoot can reach up to 173%, depending on system and input parameters, far exceeding predictions from linear analysis. These results provide a useful tool for design of absorbers to meet transient response specifications. In the following companion paper an experimental investigation is used to verify the analytical predictions.

References

References
1.
Wachs
,
M. A.
,
1973
, “
The Main Rotor Bifilar Absorber and Its Effect on Helicopter Reliability/Maintainability
,”
SAE
Technical Paper No. 730894.10.4271/730894
2.
Nester
,
T. M.
,
Haddow
,
A. G.
,
Shaw
,
S. W.
,
Brevick
,
J. E.
, and
Borowski
,
V. J.
,
2003
, “
Vibration Reduction in Variable Displacement Engines Using Pendulum Absorbers
,”
Proceedings of the SAE Noise and Vibration Conference and Exhibition
,
Traverse City, MI
, May 5,
SAE
Technical Paper 2003-01-1484.10.4271/2003-01-1484
3.
Chao
,
C. P.
,
Lee
,
C. T.
, and
Shaw
,
S. W.
,
1997
, “
Stability of the Unison Response for a Rotating System With Multiple Centrifugal Pendulum Vibration Absorbers
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
149
156
.10.1115/1.2787266
4.
Shaw
,
S. W.
, and
Geist
,
B. K.
,
2010
, “
Tuning for Performance and Stability in Systems of Nearly Tautochronic Torsional Vibration Absorbers
,”
ASME J. Vib. Acoust.
,
132
(
4
), p.
041005
.10.1115/1.4000840
5.
Alsuwaiyan
,
A. S.
, and
Shaw
,
S. W.
,
2003
, “
Steady-State Responses in Systems of Nearly Identical Torsional Vibration Absorbers
,”
ASME J. Vib. Acoust.
,
125
(
1
), pp.
80
87
.10.1115/1.1522420
6.
Alsuwaiyan
,
A. S.
, and
Shaw
,
S. W.
,
2002
, “
Performance and Dynamic Stability of General-Path Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
252
(
5
), pp.
791
815
.10.1006/jsvi.2000.3534
7.
Chao
,
C. P.
,
Lee
,
C. T.
, and
Shaw
,
S. W.
,
1997
, “
Non-Unison Dynamics of Multiple Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
204
(
5
), pp.
769
794
.10.1006/jsvi.1997.0960
8.
Nester
,
T. M.
,
Haddow
,
A. G.
,
Schmitz
,
P. M.
, and
Shaw
,
S. W.
,
2004
, “
Experimental Observations of Centrifugal Pendulum Vibration Absorbers
,”
10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-10)
,
Honolulu, HI
,
March 7–11
, Paper No. ISROMAC10-2004-043.
9.
Haddow
,
A. G.
, and
Shaw
,
S. W.
,
2003
, “
Centrifugal Pendulum Vibration Absorbers: An Experimental and Theoretical Investigation
,”
Nonlinear Dyn.
,
34
(
3–4
), pp.
293
307
.10.1023/B:NODY.0000013509.51299.c0
10.
Nester
,
T.
,
Haddow
,
A. G.
, and
Shaw
,
S. W.
,
2003
, “
Experimental Investigation of a System With Multiple Nearly Identical Centrifugal Pendulum Vibration Absorbers
,”
Proceedings of the ASME 19th Biennial Conference on Mechanical Vibration and Noise
,
Chicago, IL
, September 2–6,
ASME
Paper No. DETC2003/VIB-48410, pp.
913
921
.10.1115/DETC2003/VIB-48410
11.
Shaw
,
S. W.
,
Schmitz
,
P. M.
, and
Haddow
,
A. G.
,
2006
, “
Tautochronic Vibration Absorbers for Rotating Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
1
), pp.
283
293
.10.1115/1.2338652
12.
United States Environmental Protection Agency, and United States Department of Transportation
,
2010
, “
Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards; Final Rule
,”
Federal Register
,
75
(
8
), pp.
25324
25728
(May 7,
2010
).
13.
Falkowski
,
A. G.
,
McElwee
,
M. R.
, and
Bonne
,
M. A.
,
2004
, “
Design and Development of the DaimlerChrysler 5.7L HEMI® Engine Multi-Displacement Cylinder Deactivation System
,”
SAE
Technical Paper
2004-01-2106.10.4271/2004-01-2106
14.
Monroe
,
R. J.
, and
Shaw
,
S. W.
,
2013
, “
Nonlinear Transient Dynamics of Pendulum Torsional Vibration Absorbers—Part II: Experiment
,”
ASME J. Vib. Acoust.
135
(
1
), p.
011018
.
15.
Monroe
,
R. J.
,
Shaw
,
S. W.
,
Haddow
,
A. G.
, and
Geist
,
B. K.
,
2011
, “
Accounting for Roller Dynamics in the Design of Bifilar Torsional Vibration Absorbers
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061002
.10.1115/1.4003942
16.
Monroe
,
R. J.
, and
Shaw
,
S. W.
,
2012
, “
On the Transient Response of Forced Nonlinear Oscillators
,”
Nonlinear Dyn.
,
67
(
4
), pp.
2609
2619
.10.1007/s11071-011-0174-4
17.
Manevitch
,
L. I.
,
Kovaleva
,
A. S.
,
Manevitch
,
E. L.
, and
Shepelev
,
D. S.
,
2011
, “
Limiting Phase Trajectories and Non-Stationary Resonance Oscillations of the Duffing Oscillator. Part 1. A Non-Dissipative Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
2
), pp.
1089
1097
.10.1016/j.cnsns.2010.04.019
18.
Manevitch
,
L. I.
,
Kovaleva
,
A. S.
,
Manevitch
,
E. L.
, and
Shepelev
,
D. S.
,
2011
, “
Limiting Phase Trajectories and Nonstationary Resonance Oscillations of the Duffing Oscillator. Part 2. A Dissipative Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
2
), pp.
1098
1105
.10.1016/j.cnsns.2010.04.033
19.
Denman
,
H. H.
,
1992
, “
Tautochronic Bifilar Pendulum Torsion Absorbers for Reciprocating Engines
,”
J. Sound Vib.
,
159
(
2
), pp.
251
277
.10.1016/0022-460X(92)90035-V
20.
Monroe
,
R. J.
,
Shaw
,
S. W.
,
Haddow
,
A. G.
, and
Geist
,
B. K.
,
2009
, “
Accounting for Roller Dynamics in the Design of Bifilar Torsional Vibration Absorbers
,”
Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE2009), Vol. 1: 22nd Biennial Conference on Mechanical Vibration and Noise
,
ASME
Paper No. DETC2009-87431, pp.
1225
1236
.10.1115/DETC2009-87431
21.
Chao
,
C. P.
,
Shaw
,
S. W.
, and
Lee
,
C. T.
,
1997
, “
Non-Unison Dynamics of Multiple Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
,
204
(
5
), pp.
769
794
.10.1006/jsvi.1997.0960
22.
Shaw
,
S. W.
,
Orlowski
,
M. B.
,
Haddow
,
A. G.
, and
Geist
,
B.
,
2008
, “
Transient Dynamics of Centrifugal Pendulum Vibration Absorbers
,”
Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(ISROMAC-12),
Honolulu, HI
, February 17–22, pp.
816
825
.
23.
Hartog
,
J. P. D.
,
1985
,
Mechanical Vibrations
,
Dover
,
New York
.
You do not currently have access to this content.