An efficient domain decomposition method is proposed to study the free and forced vibrations of stepped conical shells (SCSs) with arbitrary number of step variations. Conical shells with uniform thickness are treated as special cases of the SCSs. Multilevel partition hierarchy, viz., SCS, shell segment and shell domain, is adopted to accommodate the computing requirement of high-order vibration modes and responses. The interface continuity constraints on common boundaries and geometrical boundaries are incorporated into the system potential functional by means of a modified variational principle and least-squares weighted residual method. Double mixed series, i.e., the Fourier series and Chebyshev orthogonal polynomials, are adopted as admissible displacement functions for each shell domain. To test the convergence, efficiency and accuracy of the present method, free and forced vibrations of uniform thickness conical shells and SCSs are examined under various combinations of classical and nonclassical boundary conditions. The numerical results obtained from the proposed method show good agreement with previously published results and those from the finite element program ANSYS. The computational advantage of the approach can be exploited to gather useful and rapid information about the effects of geometry and boundary conditions on the vibrations of the uniform and stepped conical shells.

References

References
1.
Irie
,
T.
,
Yamada
,
G.
, and
Kaneko
,
Y.
,
1982
, “
Free Vibration of a Conical Shell With Variable Thickness
,”
J. Sound Vib.
,
82
(
1
),
pp.
83
94
.10.1016/0022-460X(82)90544-2
2.
Grigorenko
,
A. Ya.
, and
Mal'tsev
,
S. A.
,
2009
, “
Natural Vibrations of Thin Conical Panels of Variable Thickness
,”
Int. Appl. Mech.
,
45
(
11
),
pp.
1221
1231
.10.1007/s10778-010-0262-z
3.
Liew
,
K. M.
,
Lim
,
M. K.
,
Lim
,
C. W.
,
Li
,
D. B.
, and
Zhang
,
Y. R.
,
1995
, “
Effects of Initial Twist and Thickness Variation on the Vibration Behaviour of Shallow Conical Shells
,”
J. Sound Vib.
,
180
(
2
),
pp.
271
296
.10.1006/jsvi.1995.0079
4.
Harintho
,
H.
, and
Logan
,
D. L.
,
1988
, “
Conical Shells With Discontinuities in Geometry
,”
J. Struct. Eng.
,
114
(
1
),
pp.
231
240
.10.1061/(ASCE)0733-9445(1988)114:1(231)
5.
Wan
,
F. Y. M.
,
1970
, “
On the Equations of the Linear Theory of Elastic Conical Shells
,”
Stud. Appl. Math.
,
XLIX
(
1
),
pp.
69
83
.
6.
Tong
,
L. Y.
,
1993
, “
Free Vibration of Composite Laminated Conical Shells
,”
Int. J. Mech. Sci.
,
35
(
1
),
pp.
47
61
.10.1016/0020-7403(93)90064-2
7.
Shu
,
C.
,
1996
, “
An Efficient Approach for Free Vibration Analysis of Conical Shells
,”
Int. J. Mech. Sci.
,
38
(
8–9
),
pp.
935
949
.10.1016/0020-7403(95)00096-8
8.
Liew
,
K. M.
,
Ng
,
T. Y.
, and
Zhao
,
X.
,
2005
, “
Free Vibration Analysis of Conical Shells via the Element-Free kp-Ritz Method
,”
J. Sound Vib.
,
281
(
3–5
),
pp.
627
645
.10.1016/j.jsv.2004.01.005
9.
Lim
,
C. W.
, and
Liew
,
K. M.
,
1995
, “
Vibratory Behaviour of Shallow Conical Shells by a Global Ritz Formulation
,”
Eng. Struct.
,
17
(
1
),
pp.
63
70
.10.1016/0141-0296(95)91041-X
10.
Lim
,
C. W.
, and
Liew
,
K. M.
,
1996
, “
Vibration of Shallow Conical Shells With Shear Flexibility: A First-Order Theory
,”
Int. J. Solids Struct.
,
33
(
4
),
pp.
451
468
.10.1016/0020-7683(95)00051-B
11.
Petyt
,
M.
, and
Gélat
,
P. N.
,
1998
, “
Vibration of Loudspeaker Cones Using the Dynamic Stiffness Method
,”
Appl. Acoust.
,
53
(
4
),
pp.
313
332
.10.1016/S0003-682X(97)00050-9
12.
Chung
,
H.
,
1981
, “
Free Vibration Analysis of Circular Cylindrical Shells
,”
J. Sound Vib.
,
74
(
3
),
pp.
331
350
.10.1016/0022-460X(81)90303-5
13.
Chang
,
S. D.
, and
Greif
,
R.
,
1979
, “
Vibrations of Segmented Cylindrical Shells by a Fourier Series Component Mode Method
,”
J. Sound Vib.
,
67
(
3
),
pp.
315
328
.10.1016/0022-460X(79)90539-X
14.
Monterrubio
,
L. E.
,
2009
, “
Free Vibration of Shallow Shells Using the Rayleigh–Ritz Method and Penalty Parameters
,”
Proc. IMechE. Part C: J. Mech. Eng. Sci.
,
223
(
10
),
pp.
2263
2272
.10.1243/09544062JMES1442
15.
Amabili
,
M.
,
1997
, “
Shell-Plate Interaction in the Free Vibrations of Circular Cylindrical Tanks Partially Filled With a Liquid: the Artificial Spring Method
,”
J. Sound Vib.
,
199
(
3
),
pp.
431
452
.10.1006/jsvi.1996.0650
16.
Amabili
,
M.
,
1998
, “
Rayleigh Quotient, Ritz Method and Substructuring to Study Vibrations of Structures Coupled to Heavy Fluids: Potential of the Artificial Spring Method
,”
Flow. Turbul. Combust.
,
61
(
1–4
),
pp.
21
30
.10.1023/A:1026432717204
17.
Missaoui
,
J.
, and
Cheng
,
L.
,
1999
, “
Vibroacoustic Analysis of a Finite Cylindrical Shell With Internal Floor Partition
,”
J. Sound Vib.
,
226
(
1
),
pp.
101
123
.10.1006/jsvi.1999.2278
18.
Chien
,
W. Z.
,
1983
, “
Method of High-Order Lagrange Multiplier and Generalized Variational Principles of Elasticity With More General Forms of Functionals
,”
Appl. Math. Mech.
,
4
(
2
),
pp.
143
157
.10.1007/BF02432089
19.
Washizu
,
K.
,
1982
,
Variational Methods in Elasticity and Plasticity
,
3rd ed.
,
Pergamon
,
New York
,
Chap. 2
.
20.
Leissa
,
A. W.
,
1973
,
Vibration of Shells (NASA SP-288)
,
Government Printing Office
,
Washington, DC
,
Chap. 1
.
21.
Dupire
,
G.
,
Boufflet
,
J. P.
,
Dambrine
,
M.
, and
Villon
,
P.
,
2010
, “
On the Necessity of Nitsche Term
,”
Appl. Numer. Math.
,
60
(
9
),
pp.
888
902
.10.1016/j.apnum.2010.04.013
22.
Pellicano
,
F.
,
2007
, “
Vibrations of Circular Cylindrical Shells: Theory and Experiments
,”
J. Sound Vib.
,
303
(
1–2
),
pp.
154
170
.10.1016/j.jsv.2007.01.022
23.
Zhou
,
D.
,
Cheung
,
Y. K.
,
Lo
,
S. H.
, and
Au
,
F. T. K.
,
2003
, “
3D Vibration Analysis of Solid and Hollow Circular Cylinders via Chebyshev–Ritz Method
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
13–14
),
pp.
1575
1589
.10.1016/S0045-7825(02)00643-6
24.
Petyt
,
M.
,
1990
,
Introduction to Finite Element Vibration Analysis
,
Cambridge University
,
Cambridge, England
,
Chap. 9
.
You do not currently have access to this content.