Free vibration behavior of laminated soft core sandwich plates with stiff laminated face sheets is investigated using a new C0 finite element (FE) model based on higher order zigzag theory (HOZT) in this paper. The in-plane displacement variations are considered to be cubic for both the face sheets and the core, while the transverse displacement is assumed to vary quadratically within the core and remains constant in the faces beyond the core. The plate theory ensures a shear stress-free condition at the top and bottom surfaces of the plate. Thus, the plate theory has all of the features required for an accurate modeling of laminated sandwich plates. As very few elements based on this plate theory (HOZT) exist and they possess certain disadvantages, an attempt has been made to develop this new element. The nodal field variables are chosen in such a manner to overcome the problem of continuity requirement of the derivatives of transverse displacements, i.e., no need to impose any penalty stiffness in the formulation. A nine node C0 quadratic plate finite element is implemented to model the HOZT for the present analysis. A new C0 element has been utilized to study some interesting problems on free vibration analysis of laminated sandwich plates. Many new results are also presented which should be useful for future research.

References

References
1.
Srinivas
,
S.
, and
Rao
,
A. K.
,
1970
, “
Bending, Vibration and Buckling of Simply Supported Thick Orthotropic Rectangular Plates and Laminates
,”
Int. J. Solids Struct.
,
6
(
11
), pp.
1463
1481
.10.1016/0020-7683(70)90076-4
2.
Noor
,
A. K.
,
1973
, “
Free Vibration of Multilayered Composite Plates
,”
Am. Inst. Aeronaut. Astronaut. J.
,
11
(
7
), pp.
1038
1039
.10.2514/3.6868
3.
Wu
,
C. P.
, and
Chiu
,
K. H.
,
2011
, “
RMVT-Based Mesh-Less Collocation and Element Free Galerkin Methods for the Quasi 3D Free Vibration Analysis of Multilayered Composite and FGM Plates
,”
J. Compos. Struct.
,
93
, pp.
1433
1448
.10.1016/j.compstruct.2010.11.015
4.
Nabi
,
S. M.
, and
Ganesan
,
N.
,
1994
, “
A Generalized Element for the Free Vibration Analysis of Composite Beam
,”
J. Comput. Struct.
,
51
, pp.
607
610
.10.1016/0045-7949(94)90068-X
5.
Yildirim
,
V
.,
2000
, “
Effect of the Longitudinal to Transverse Moduli Ratio on the In-Plane Natural Frequencies of Symmetrically Cross-Ply Beams by the Stiffness Method
,”
J. Compos. Struct.
,
50
, pp.
319
326
.10.1016/S0263-8223(00)00124-0
6.
Chakraborty
,
A.
,
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
,
2002
, “
Finite Element Analysis of Free Vibration and Wave Propagation in Asymmetric Composite Beams With Structural Discontinuities
,”
J. Compos. Struct.
,
55
, pp.
23
36
.10.1016/S0263-8223(01)00130-1
7.
Goyal
,
V. K.
, and
Kapania
,
R. K.
,
2007
, “
A Shear-Deformable Beam Element for the Analysis of Laminated Composites
,”
J. Finite Elem. Anal. Design
,
43
, pp.
463
477
.10.1016/j.finel.2006.11.011
8.
Shi
,
G.
, and
Lam
,
K. Y.
,
1999
, “
Finite Element Vibration Analysis of Composite Beams Based on Higher Order Theory
,”
J. Sound Vib.
,
219
, pp.
707
721
.10.1006/jsvi.1998.1903
9.
Reddy
,
J. N.
,
1984
, “
A Simple Higher Order Theory for Laminated Composite Plates
,”
J. Appl. Mech.
,
51
, pp.
745
752
.10.1115/1.3167719
10.
Kant
,
T.
, and
Gupta
,
A.
,
1988
, “
A Finite Element Model for a Higher Order Shear Deformable Beam Theory
,”
J. Sound Vib.
,
125
(
2
), pp.
193
202
.10.1016/0022-460X(88)90278-7
11.
Heyliger
,
P. R.
, and
Reddy
,
J. N.
,
1988
, “
A Higher Order Beam Finite Element for Bending and Vibration Problems
,”
J. Sound Vib.
,
126
, pp.
309
326
.10.1016/0022-460X(88)90244-1
12.
Chandrashekhara
,
K.
, and
Bangera
,
K. M.
,
1992
, “
Free Vibration of Composite Beams Using Refined Shear Flexible Beam Element
,”
J. Comput. Struct.
,
43
, pp.
719
727
.10.1016/0045-7949(92)90514-Z
13.
Chandrashekhara
,
K.
, and
Bangera
,
K. M.
,
1993
, “
Vibration of Symmetrically Laminated Clamped Free Beam With a Mass at the Free End
,”
J. Sound Vib.
,
160
, pp.
93
101
.10.1006/jsvi.1993.1006
14.
Khedir
,
A. A.
, and
Reddy
,
J. N.
,
1994
, “
Free Vibration of Cross-Ply Laminated Beams With Arbitrary Boundary Conditions
,”
Int. J. Eng. Sci.
,
32
, pp.
1971
1980
.10.1016/0020-7225(94)90093-0
15.
Marur
,
S. R.
, and
Kant
,
T.
,
1997
, “
On the Performance of Higher Order Theories for Transient Dynamic Analysis of Sandwich and Composite Beams
,”
J. Comput. Struct.
,
65
, pp.
741
759
.10.1016/S0045-7949(96)00427-0
16.
Aydogdu
,
M.
,
2009
, “
A New Shear Deformation Theory for Laminated Composite Plates
,”
J. Compos. Struct.
,
89
, pp.
94
101
.10.1016/j.compstruct.2008.07.008
17.
Shankara
,
C. A.
, and
Iyengar
,
N. G. R.
,
1996
, “
A C0 Element for The Free Vibration Analysis of Laminated Composite Plates
,”
J. Sound Vib.
,
191
(
5
), pp.
721
738
.10.1006/jsvi.1996.0152
18.
Kant
,
T.
, and
Swaminathan
,
K.
,
2001
, “
Free Vibration of Isotropic, Orthotropic, and Multilayer Plates Based on Higher Order Refined Theories
,”
J. Sound Vib.
,
241
, pp.
319
327
.10.1006/jsvi.2000.3232
19.
Singh
,
B. N.
,
Yadav
,
D.
, and
Iyenger
,
N. G. R.
,
2001
, “
Natural Frequencies of Composite Plates With Random Material Properties Using Higher Order Shear Deformation Theory
,”
Int. J. Mech. Sci.
,
43
, pp.
2193
2214
.10.1016/S0020-7403(01)00046-7
20.
Ganapathi
,
M.
, and
Makhecha
,
D. P.
,
2001
, “
Free Vibration Analysis of Multi-Layered Laminates Based on an Accurate Higher Order Theory
,”
Composites: Part B
,
32
, pp.
535
543
.10.1016/S1359-8368(01)00028-2
21.
Nayak
,
A. K.
,
Moy
,
S. S. J.
, and
Shenoi
,
R. A.
,
2002
, “
Free Vibration Analysis of Composite Sandwich Plates Based on Reddy's Higher-Order Theory
,”
Composites: Part B
,
33
, pp.
505
519
.10.1016/S1359-8368(02)00035-5
22.
Aagaah
,
M. R.
,
Mahinfalah
,
M.
, and
Jazar
,
G. N.
,
2006
, “
Natural Frequencies of Laminated Composite Plates Using Third Order Shear Deformation Theory
,”
J. Compos. Struct.
,
72
, pp.
273
279
.10.1016/j.compstruct.2004.11.012
23.
Wang
,
C. M.
,
Ang
,
K. K.
,
Yang
,
L.
, and
Watanabe
,
E.
,
2000
, “
Free Vibration of Skew Sandwich Plates With Laminated Facings
,”
J. Sound Vib.
,
235
, pp.
317
340
.10.1006/jsvi.2000.2918
24.
Zhen
,
W.
, and
Wanji
,
C.
,
2006
, “
Free Vibration of Laminated Composite and Sandwich Plates Using Global Local Higher Order Theory
,”
J. Sound Vib.
,
298
, pp.
333
349
.10.1016/j.jsv.2006.05.022
25.
Zhen
,
W.
,
Wanji
,
C.
, and
Xiaohui
,
R.
,
2010
, “
An Accurate Higher Order Theory and C0 Finite Element for Free Vibration Analysis of Laminated Composite and Sandwich Plates
,”
J. Compos. Struct.
,
92
, pp.
1299
1307
.10.1016/j.compstruct.2009.11.011
26.
Sheikh
,
A. H.
, and
Chakrabarty
,
A. A.
,
2003
, “
New Plate Bending Element Based on Higher Order Shear Deformation Theory for the Analysis of Composite Plates
,”
J. Finite Elem. Anal. Design
,
39
, pp.
883
903
.10.1016/S0168-874X(02)00137-3
27.
Srinivas
,
S.
,
1973
, “
A Refined Analysis of Composite Laminates
,”
J. Sound Vib.
,
30
, pp.
495
507
.10.1016/S0022-460X(73)80170-1
28.
Lu
,
X.
, and
Liu
,
D.
,
1992
, “
An Interlaminar Shear Stress Continuity Theory for Both Thin and Thick Laminates
,”
ASME J. Appl. Mech.
,
59
, pp.
502
509
.10.1115/1.2893752
29.
Robbins
,
D. H.
, Jr.
, and
Reddy
,
J. N.
,
1996
, “
Theories and Computational Models for Composite Laminates
,”
Allied Mech. Rev.
,
49
, pp.
155
199
.
30.
Toledano
,
A.
, and
Murakami
,
H.
,
1987
, “
Composite Plate Theory for Arbitrary Laminate Configuration
,”
J. Appl. Mech.
,
54
, pp.
181
189
.10.1115/1.3172955
31.
Rao
,
M. K.
, and
Desai
,
Y. M.
,
2004
, “
Analytical Solutions for Vibrations of Laminated and Sandwich Plates Using Mixed Theory
,”
J. Compos. Struct.
,
63
(
3–4
), pp.
361
373
.10.1016/S0263-8223(03)00185-5
32.
Rao
,
M. K.
,
Scherbatiuk
,
K.
,
Desai
,
Y. M.
, and
Shah
,
A. H.
,
2004
, “
Natural Vibrations of Laminated and Sandwich Plates
,”
J. Eng. Mech.
,
130
(
11
), pp.
1268
1278
.10.1061/(ASCE)0733-9399(2004)130:11(1268)
33.
Ambartsumian
,
S. A.
,
1957
, “
Analysis of Two-Layer Orthotropic Shells
,”
Investiia Akad Nauk SSSR, Ot Tekh Nauk
,
7
.
34.
Ambartsumian
,
S. A.
,
1957
, “
Two Analysis Method for Two-Layer Orthotropic Shells
,”
Izv. An. Arm. SSR Seiya Fiz-Matem nauk
,
10
(
2
)
.
35.
DiSciuva
,
M.
,
1984
, “
A Refined Transverse Shear Deformation Theory for Multilayered Anisotropic Plates
,”
Atti Accad. Sci. Torino.
,
118
, pp.
279
295
.
36.
Liu
,
D.
, and
Li
,
X.
,
1996
, “
An Overall View of Laminate Theories Based on Displacement Hypothesis
,”
J. Compos. Mater.
,
30
, pp.
1539
1560
.10.1177/002199839603001402
37.
Bhaskar
,
K.
, and
Varadan
,
T. K.
,
1989
, “
Refinement of Higher Order Laminated Plate Theories
,”
Am. Inst. Aeronaut. Astronaut. J.
,
27
, pp.
1830
1831
.10.2514/3.10345
38.
Lee
,
C. Y.
, and
Liu
,
D.
,
1991
, “
Interlaminar Shear Stress Continuity Theory for Laminated Composite Plates
,”
Am. Inst. Aeronaut. Astronaut. J.
,
29
, pp.
2010
2012
.10.2514/3.10833
39.
Cho
,
M.
, and
Parmerter
,
R. R.
,
1993
, “
Efficient Higher Order Composite Plate Theory for General Lamination Configurations
,”
Am. Inst. Aeronaut. Astronaut. J.
,
31
(
7
), pp.
1299
1306
.10.2514/3.11767
40.
Kapuria
,
S.
,
Dumir
,
P. C.
, and
Ahmed
,
A.
,
2003
, “
An Efficient Higher Order Zigzag Theory for Composite and Sandwich Beams Subjected to Thermal Loading
,”
Int. J. Solids Struct.
,
40
, pp.
6613
6631
.10.1016/j.ijsolstr.2003.08.014
41.
Kapuria
,
S.
,
Dumir
,
P. C.
, and
Jain
,
N. K.
,
2004
, “
Assessment of Zigzag Theory for Static Loading, Buckling, Free and Force Response of Composite and Sandwich Beams
,”
J. Compos. Struct.
,
64
, pp.
317
327
.10.1016/j.compstruct.2003.08.013
42.
Carrera
,
E.
,
2003
, “
Historical Review of Zig-Zag Theories for Multilayered Plates and Shells
,”
Appl. Mech. Rev.
,
56
(
3
), pp.
287
308
.10.1115/1.1557614
43.
Chakrabarti
,
A.
, and
Sheikh
,
A. H.
,
2004
, “
Vibration of Laminate-Faced Sandwich Plate by a New Refined Element
,”
ASCE J. Aerosp. Eng.
,
17
, pp.
123
134
.10.1061/(ASCE)0893-1321(2004)17:3(123)
44.
Shimpi
,
R. P.
, and
Ghugal
,
Y. M.
,
2001
, “
A New Layerwise Trigonometric Shear Deformation Theory for Two Layered Cross-Ply Beams
,”
J. Compos. Sci. Technol.
,
61
, pp.
1271
1283
.10.1016/S0266-3538(01)00024-0
45.
Shimpi
,
R. P.
, and
Ainapure
,
A. V.
,
2001
, “
A Beam Finite Element Based on Layerwise Trigonometric Shear Deformation Theory
,”
J. Compos. Struct.
,
53
, pp.
153
162
.10.1016/S0263-8223(00)00186-0
46.
Vidal
,
P.
, and
Polit
,
O.
,
2010
, “
Vibration of Multilayered Beams Using Sinus Finite Elements With Transverse Normal Stress
,”
J. Compos. Struct.
,
92
, pp.
1524
1534
.10.1016/j.compstruct.2009.10.009
47.
Rodrigues
,
J. D.
,
Roque
,
C. M. C.
,
Ferreira
,
A. J. M.
,
Carrera
,
E.
, and
Cinefra
,
M.
,
2011
, “
Radial Basis Functions-Finite Differences Collocation and a Unified Formulation for Bending, Vibration and Buckling Analysis of Laminated Plates, According to Murakami's Zigzag Theory
,”
J. Compos. Struct.
,
93
(
7
), pp.
1613
1620
.10.1016/j.compstruct.2011.01.009
48.
Averill
,
R. C.
,
1994
, “
Static and Dynamic Response of Moderately Thick Laminated Beams With Damage
,”
J. Compos. Eng.
,
4
, pp.
381
395
.10.1016/S0961-9526(09)80013-0
49.
DiSciuva
,
M.
,
1985
, “
Development of Anisotropic Multilayered Shear Deformable Rectangular Plate Element
,”
J. Comput. Struct.
,
21
, pp.
789
796
.10.1016/0045-7949(85)90155-5
50.
DiSciuva
,
M.
,
1993
, “
A General Quadrilateral Multilayered Plate Element With Continuous Interlaminar Stresses
,”
J. Comput. Struct.
,
47
, pp.
91
105
.10.1016/0045-7949(93)90282-I
51.
Carrera
,
E.
,
1996
, “
C0 Reissner-Mindlin Multilayered Plate Element Including Zigzag and Interlaminar Stress Continuity
,”
J. Numer. Methods Eng.
,
39
, pp.
1797
1820
.10.1002/(SICI)1097-0207(19960615)39:11<1797::AID-NME928>3.0.CO;2-W
52.
Averill
,
R. C.
, and
Yip
,
Y. C.
,
1996
, “
Development of Simple, Robust Finite Elements Based on Refined Theories for Thick Laminated Beams
,”
J. Comput. Struct.
,
59
, pp.
529
546
.10.1016/0045-7949(95)00269-3
53.
Kulkarni
,
S. D.
, and
Kapuria
,
S.
,
2008
, “
Free Vibration Analysis of Composite and Sandwich Plates Using an Improved Discrete Kirchoff Quadrilateral Element Based on Third Order Zigzag Theory
,”
Comput. Mech.
,
42
, pp.
803
824
.10.1007/s00466-008-0285-z
54.
Kapuria
,
S.
, and
Kulkarni
,
S. D.
,
2007
, “
An Improved Discrete Kirchhoff Element Based on Third Order Zigzag Theory for Static Analysis of Composite and Sandwich Plates
,”
Int. J. Numer. Methods Eng.
,
69
, pp.
1948
1981
.10.1002/nme.1836
55.
Icardi
,
U.
,
2001
, “
A Three Dimensional Zigzag Theory for Analysis of Thick Laminated Beams
,”
J. Compos. Struct.
,
53
, pp.
123
135
.10.1016/S0263-8223(00)00189-6
56.
Icardi
,
U.
, “
Applications of Zigzag Theories to Sandwich Beams
,”
Mech. Adv. Mater. Struct.
,
10
, pp.
77
97
.10.1080/15376490306737
57.
Averill
,
R. C.
, and
Yip
,
Y. C.
,
1996
, “
Thick Beam Theory and Finite Element Model With Zigzag Sublaminate Approximations
,”
Am. Inst. Aeronaut. Astronaut. J.
,
34
, pp.
1627
1632
.10.2514/3.13281
58.
Cho
,
Y. B.
, and
Averill
,
R. C.
,
2000
, “
First Order Zigzag Sublaminate Plate Theory and Finite Element Model for Laminated Composite and Sandwich Panels
,”
J. Compos. Struct.
,
50
, pp.
1
15
.10.1016/S0263-8223(99)00063-X
59.
Aitharaju
,
V. R.
, and
Averill
,
R. C.
,
1999
, “
C0 Zigzag Kinematic Displacement Models for the Analysis of Laminated Composites
,”
Mech. Compos. Mater. Struct.
,
6
, pp.
31
56
.10.1080/107594199305647
60.
Bambole
,
A. N.
, and
Desai
,
Y. M.
,
2007
, “
Hybrid-Interface Finite Element for Laminated Composite and Sandwich Beams
,”
J. Finite Elem. Anal. Design
,
43
, pp.
1023
1036
.10.1016/j.finel.2007.06.013
61.
Rao
,
M. K.
,
Desai
,
Y. M.
, and
Chitnis
,
M. R.
,
2001
, “
Free Vibrations of Laminated Beams Using Mixed Theory
,”
J. Compos. Struct.
,
52
, pp.
149
160
.10.1016/S0263-8223(00)00162-8
62.
Ramtekkar
,
G. S.
, and
Desai
,
Y. M.
,
2002
, “
Natural Vibrations of Laminated Composite Beams by Using Mixed Finite Element Modeling
,”
J. Sound Vib.
,
257
(
4
), pp.
635
651
.10.1006/jsvi.2002.5072
63.
Frostig
,
Y.
, and
Thomsen
,
O. T.
,
2004
, “
High-Order Free Vibration of Sandwich Panels With a Flexible Core
,”
Int. J. Solids Struct.
,
41
(
5–6
), pp.
1697
1724
.10.1016/j.ijsolstr.2003.09.051
64.
Frostig
,
Y.
,
Baruch
,
M.
,
Vilnay
,
O.
, and
Sheinman
,
I.
,
1992
, “
High-Order Theory for Sandwich-Beam Behavior With Transversely Flexible Core
,”
ASCE J. Eng. Mech.
,
118
, pp.
1026
1043
.10.1061/(ASCE)0733-9399(1992)118:5(1026)
65.
Givil
,
H. S.
,
Rabinovitch
,
O.
, and
Frosting
,
Y.
,
2007
, “
High-Order Nonlinear Contact Effects in the Dynamic Behavior of Delaminated Sandwich Panel With a Flexible Core
,”
Int. J. Solids Struct.
,
44
, pp.
77
99
.10.1016/j.ijsolstr.2006.04.016
66.
Carrera
,
E.
,
2000
, “
Single- vs Multilayer Plate Modelings on the Basis of Reissner's Mixed Theorem
,”
AIAA J.
,
38
(
2
), pp.
342
352
.10.2514/2.962
67.
Carrera
,
E.
,
2001
, “
Developments, Ideas and Evaluations Based Upon the Reissner's Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells
,”
J. Appl. Mech. Rev.
,
54
(
4
), pp.
301
329
.10.1115/1.1385512
68.
Carrera
,
E.
, and
Ciuffreda
,
A.
,
2005
, “
Bending of Composites and Sandwich Plates Subjected to Localized Lateral Loadings: A Comparison of Various Theories
,”
J. Compos. Struct.
,
68
, pp.
185
202
.10.1016/j.compstruct.2004.03.013
69.
Carrera
,
E.
, and
Brischetto
,
S.
,
2009
, “
A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plate
,”
J. Appl. Mech. Rev.
,
62
(
1
), pp.
1
17
.
70.
Pandit
,
M. K.
,
Sheikh
,
A. H.
, and
Singh
,
B. N.
,
2008
, “
An Improved Higher Order Zigzag Theory for the Static Analysis of Laminated Sandwich Plate With Soft-Core
,”
J. Finite Elem. Anal. Design
,
44
, pp.
602
610
.10.1016/j.finel.2008.02.001
71.
Pandit
,
M. K.
,
Sheikh
,
A. H.
, and
Singh
,
B. N.
,
2008
, “
Buckling of Laminated Sandwich Plates With Soft Core Based on an Improved Higher Order Zigzag Theory
,”
J. Thin-Walled Struct.
,
46
, pp.
1183
1191
.10.1016/j.tws.2008.03.002
72.
Pandit
,
M. K.
,
Sheikh
,
A. H.
, and
Singh
,
B. N.
,
2010
, “
Stochastic Free Vibration Response of Soft Core Sandwich Plates Using an Improved Higher Order Zigzag Theory
,”
J. Aerosp. Eng.
,
23
, pp.
14
23
.10.1061/(ASCE)0893-1321(2010)23:1(14)
73.
Corr
,
R. B.
, and
Jennings
,
A.
,
1976
, “
A Simultaneous Iteration Algorithm for Symmetric Eigenvalue Problems
,”
Int. J. Numer. Methods Eng.
,
10
, pp.
647
663
.10.1002/nme.1620100313
74.
Chakrabarti
,
A.
,
Chalak
,
H. D.
,
Iqbal
,
A.
, and
Sheikh
,
A. H.
,
2011
, “
A New FE Model Based on Higher Order Zigzag Theory for the Analysis of Laminated Sandwich Beam With Soft Core
,”
J. Compos. Struct.
,
93
, pp.
271
279
.10.1016/j.compstruct.2010.08.031
75.
Liew
,
K. M.
,
Huang
,
Y. Q.
, and
Reddy
,
J. N.
,
2003
, “
Vibration Analysis of Symmetrically Laminated Plates Based on FSDT Using the Moving Least Squares Differential Quadrature Method
,”
J. Comput. Methods Appl. Mech. Eng.
,
192
, pp.
2203
2222
.10.1016/S0045-7825(03)00238-X
76.
Reddy
,
J. N.
,
1997
,
Mechanics of Laminated Composite Plates: Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
77.
Khdeir
,
A. A.
, and
Librescu
,
L.
,
1988
, “
Analysis of Symmetric Cross-Ply Elastic Plates Using a Higher-Order Theory, Part II: Buckling and Free Vibration
,”
J. Compos. Struct.
,
9
, pp.
259
277
.10.1016/0263-8223(88)90048-7
78.
Matsunaga
,
H.
,
2001
, “
Vibration and Stability of Angle Ply Laminated Composite Plates Subjected to In-Plane Stresses
,”
Int. J. Mech. Sci.
,
43
, pp.
1925
1944
.10.1016/S0020-7403(01)00002-9
You do not currently have access to this content.