In the analysis of an acoustic radiation mode of a baffled plate, Rayleigh integral with free space Green's function is involved. The boundary element method (BEM) is one of the approaches to compute its modes and radiation efficiencies. In this paper a fast multipole BEM in conjunction with an iterative solver based on the implicit restart Arnold method is proposed to efficiently and accurately evaluate acoustic radiation modes and efficiencies. Even though a 3D free space Green's function is used here, a quad tree is used for the hierarchical tree structure of the boundary mesh instead of an oct tree, which can speed up the fast multipole BEM. Similar to the analytical integration of moment evaluations, the analytical integration is also employed to compute the local expansion coefficients which further improves the efficiency of the fast multipole BEM for the analysis of an acoustic radiation mode of baffled plates. Comparison between numerical and theoretical radiation efficiencies of a baffled circular plate vibrating as a piston shows that the fast multipole BEM proposed here can give results with very good accuracy. The computation of the eigenvalues and eigenvectors of a baffled rectangular plate further reveals the efficiency in CPU time, smaller memory size, and accuracy of the fast multipole BEM in the analysis of an acoustic radiation mode.

References

References
1.
Kirkup
,
S. M.
,
1994
, “
Computational Solution of the Acoustic Field Surrounding a Baffled Panel By the Rayleigh Integral Method
,”
Appl. Math. Model.
,
18
(
7
),
pp.
403
407
.10.1016/0307-904X(94)90227-5
2.
Cunefare
,
K. A.
,
1991
, “
The Minimum Multimodal Radiation Efficiency of Baffled Finite Beams
,”
J. Acoust. Soc. Am.
,
90
(
5
),
pp.
2521
2529
.10.1121/1.402057
3.
Cunefare
,
K. A.
, and
Currey
,
M. N.
,
1994
, “
On the Exterior Acoustic Radiation Modes of Structures
,”
J. Acoust. Soc. Am.
,
96
(
4
),
pp.
2302
2312
.10.1121/1.410102
4.
Cunefare
,
K. A.
,
1990
, “
The Design Sensitivity and Control of Acoustic Power Radiated By Three-Dimensional Structures
,”
Ph.D. thesis
,
Pennsylvania State University, University Park, PA
.
5.
Elliott
,
S. J.
, and
Johnson
,
M. E.
,
1993
, “
Radiation Modes and the Active Control of Sound Power
,”
J. Acoust. Soc. Am.
,
94
(
4
),
pp.
2194
2204
.10.1121/1.407490
6.
Chen
,
P. T.
, and
Ginsberg
,
J. H.
,
1995
, “
Complex Power, Reciprocity, and Radiation Modes for Submerged Bodies
,”
J. Acoust. Soc. Am.
,
98
(
6
),
pp.
3343
3351
.10.1121/1.413821
7.
Snyder
,
S. D.
, and
Tanaka
,
N.
,
1995
, “
Calculating Total Acoustic Power Output Using Modal Radiation Efficiencies
,”
J. Acoust. Soc. Am.
,
97
(
3
),
pp.
1702
1709
.10.1121/1.412048
8.
Fahnline
,
J. B.
, and
Koopmann
,
G. H.
,
1996
, “
A Lumped Parameter Model for the Acoustic Power Output From a Vibrating Structure
,”
J. Acoust. Soc. Am.
,
100
(
6
),
pp.
3539
3547
.10.1121/1.417330
9.
Fahnline
,
J. B.
, and
Koopmann
,
G. H.
,
1997
, “
Numerical Implementation of the Lumped Parameter Model for the Acoustic Power Output of a Vibrating Structure
,”
J. Acoust. Soc. Am.
,
102
(
1
),
pp.
179
192
.10.1121/1.419781
10.
Arenas
,
J. P.
,
2008
, “
Numerical Computation of the Sound Radiation From a Planar Baffled Vibrating Surface
,”
J. Comput. Acoust.
,
16
(
3
),
pp.
321
341
.10.1142/S0218396X08003671
11.
Rokhlin
,
V.
,
1985
, “
Rapid Solution of Integral Equations of Classical Potential Theory
,”
J. Comput. Phys.
,
60
(
2
),
pp.
187
207
.10.1016/0021-9991(85)90002-6
12.
Greengard
,
L.
, and
Rokhlin
,
V.
,
1987
, “
A Fast Algorithm for Particle Simulations
,”
J. Comput. Phys.
,
73
(
2
),
pp.
325
348
.10.1016/0021-9991(87)90140-9
13.
Amini
,
S.
, and
Profit
,
A. T. J.
,
2003
, “
Multi-Level Fast Multipole Solution of the Scattering Problem
,”
Eng. Anal. Bound. Elem.
,
27
(
5
),
pp.
547
564
.10.1016/S0955-7997(02)00161-3
14.
Chen
,
J. T.
, and
Chen
,
K. H.
,
2004
, “
Applications of the Dual Integral Formulation in Conjunction With Fast Multipole Method in Large-Scale Problems for 2D Exterior Acoustics
,”
Eng. Anal. Bound. Elem.
,
28
(
6
),
pp.
685
709
.10.1016/S0955-7997(03)00122-X
15.
Fischer
,
M.
Gauger
,
U.
, and
Gaul
,
L.
,
2004
, “
A Multipole Galerkin Boundary Element Method for Acoustics
,”
Eng. Anal. Bound. Elem.
,
28
(
2
),
pp.
155
162
.10.1016/j.enganabound.2003.07.001
16.
Gumerov
,
N. A.
, and
Duraiswami
,
R.
,
2005
, “
Computation of Scattering From Clusters of Spheres Using the Fast Multipole Method
,”
J. Acoust. Soc. Am.
,
117
(
41
),
pp.
1744
1761
.10.1121/1.1853017
17.
Fischer
,
M.
, and
Gaul
,
L.
,
2005
, “
Application of the Fast Multipole BEM for Structural-Acoustic Simulations
,”
J. Comput. Acoust.
,
13
(
1
),
pp.
87
98
.10.1142/S0218396X05002578
18.
Gumerov
,
N.
, and
Duraiswami
,
R.
,
2004
,
Fast Multipole Methods for the Helmholtz Equation in Three Dimensions
,
Elsevier
,
New York
.
19.
Gaul
,
L.
, and
Fischer
,
M.
,
2006
, “
Large-Scale Simulations of Acoustic-Structure Interaction Using the Fast Multipole BEM
,”
ZAMM-Z. Angew. Math. Me.
,
86
(
1
),
pp.
4
17
.10.1002/zamm.200510240
20.
Cheng
,
H.
,
Crutchfield
,
W. Y.
,
Gimbutas
,
Z.
,
Greengard
,
L. F.
,
Ethridge
,
J. F.
,
Huang
,
J.
,
Rokhlin
,
V.
,
Yarvin
,
N.
, and
Zhao
,
J.
,
2006
, “
A Wideband Fast Multipole Method for the Helmholtz Equation in Three Dimensions
,”
J. Comput. Phys.
,
216
(
1
),
pp.
300
325
.10.1016/j.jcp.2005.12.001
21.
Shen
,
L.
, and
Liu
,
Y. J.
,
2007
, “
An Adaptive Fast Multipole Boundary Element Method for Three-Dimensional Acoustic Wave Problems Based on the Burton-Miller Formulation
,”
Comput. Mech.
,
40
(
3
),
pp.
461
472
.10.1007/s00466-006-0121-2
22.
Tong
,
M. S.
,
Chew
,
W. C.
, and
White
,
M. J.
,
2008
, “
Multilevel Fast Multipole Algorithm for Acoustic Wave Scattering By Truncated Ground With Trenches
,”
J. Acoust. Soc. Am.
,
123
(
5
),
pp.
2513
2521
.10.1121/1.2897048
23.
Bapat
,
M. S.
,
Shen
,
L.
, and
Liu
,
Y. J.
,
2009
, “
Adaptive Fast Multipole Boundary Element Method for Three-Dimensional Half-Space Acoustic Wave Problems
,”
Eng. Anal. Bound. Elem.
,
33
(
8–9
),
pp.
1113
1123
.10.1016/j.enganabound.2009.04.005
24.
Gumerov
,
N. A.
, and
Duraiswami
,
R.
,
2009
, “
A Broadband Fast Multipole Accelerated Boundary Element Method for the Three Dimensional Helmholtz Equation
,”
J. Acoust. Soc. Am.
,
125
(
1
),
pp.
191
205
.10.1121/1.3021297
25.
Bapat
,
M. S.
, and
Liu
,
Y. J.
,
2010
, “
A New Adaptive Algorithm for the Fast Multipole Boundary Element Method
,”
CMES-Comp. Model. Eng.
,
58
(
2
),
pp.
161
183
. 10.3970/cmes.2010.058.161
26.
Wu
,
H. J.
,
Liu
,
Y. J.
, and
Jiang
,
W. K.
,
2012
, “
Analytical Integration of the Moments in the Diagonal Form Fast Multipole Boundary Element Method for 3-D Acoustic Wave Problems
,”
Eng. Anal. Bound. Elem.
,
36
(
2
),
pp.
248
254
.10.1016/j.enganabound.2011.08.004
27.
Nishimura
,
N.
,
2002
, “
Fast Multipole Accelerated Boundary Integral Equation Methods
,”
Appl. Mech. Rev.
,
55
(
4
),
pp.
299
324
.10.1115/1.1482087
28.
Liu
,
Y. J.
,
2009
,
Fast Multipole Boundary Element Method: Theory and Applications in Engineering
,
Cambridge University Press
,
Cambridge
, UK.
29.
Sorens
,
D. C.
,
1996
, “
Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations
,”
No. 96-40
,
Institute for Computer Applications in Science and Engineering
,
Hampton
, VA.
30.
Rahola
,
J.
,
1996
, “
Diagonal Forms of the Translation Operators in the Fast Multipole Algorithm for Scattering Problems
,”
Bit
,
36
(
2
),
pp.
333
358
.10.1007/BF01731987
31.
Koc
,
S.
,
Song
,
J.
, and
Chew
,
W. C.
,
1999
, “
Error Analysis for the Numerical Evaluation of the Diagonal Forms of the Scalar Spherical Addition Theorem
,”
SIAM J. Numer. Anal.
,
36
(
3
),
pp.
906
921
.10.1137/S0036142997328111
32.
Amini
,
S.
, and
Profit
,
A.
,
2000
, “
Analysis of the Truncation Errors in the Fast Multipole Method for Scattering Problems
,”
J. Comput. Appl. Math.
,
115
(
1–2
),
pp.
23
33
.10.1016/S0377-0427(99)00175-2
33.
Darve
,
E.
,
2001
, “
The Fast Multipole Method I: Error Analysis and Asymptotic Complexity
,”
SIAM J. Numer. Anal.
,
38
(
1
),
pp.
98
128
.10.1137/S0036142999330379
34.
Coifman
,
R.
,
Rokhlin
,
V.
, and
Wandzura
,
S.
,
1993
, “
The Fast Multipole Method for the Wave Equation: A Pedestrian Prescription
,”
IEEE Antenn. Propag. M.
,
35
(
3
),
pp.
7
12
.10.1109/74.250128
35.
Kim
,
Y. H.
,
2010
,
Sound Propagation: An Impedance Based Approach
,
Wiley
,
Singapore
.
36.
Greengard
,
L.
,
Huang
,
J.
,
Rokhlin
,
V.
, and
Wandzura
,
S.
,
1998
, “
Accelerating Fast Multipole Methods for the Helmholtz Equation at Low Frequencies
,”
IEEE Comput. Sci. Eng.
,
5
(
3
),
pp.
32
38
.10.1109/99.714591
37.
Darve
,
E.
, and
Havé
,
P.
,
2004
, “
Efficient Fast Multipole Method for Low-Frequency Scattering
,”
J. Comput. Phys.
,
197
(
1
),
pp.
341
363
.10.1016/j.jcp.2003.12.002
38.
Anderson
,
E.
,
Bai
,
Z.
,
Bischof
,
C.
,
Blackford
,
S.
,
Demmel
,
J.
,
Dongarra
,
J.
,
Croz
,
J. D.
,
Greenbaum
,
A.
,
Hammarling
,
S.
,
McKenney
,
A.
, and
Sorensen
,
D.
,
1999
,
LAPACK User's Guide
,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia
.
You do not currently have access to this content.