For the purpose of identifying the acoustic characteristics of honeycomb sandwich panels, finite element method (FEM), combined with boundary element method (BEM), has been widely used. However, the latter approach is not always applicable to high frequency analyses since it requires a large number of FEM/BEM meshes. In order to reduce computational resources and modeling times, a hybrid analytical/finite element method (HAFEM) is described that uses a finite element approximation in the thickness direction, while analytical solutions are assumed in the plane directions. Thus, it makes it possible to use a small number of finite elements, even for high frequency analyses. By using the HAFEM, the wave transmission, propagation, and radiation characteristics of the honeycomb sandwich panels are investigated. The proposed HAFEM procedure is validated by comparing the predicted transmission loss (TL) results to the measured ones. Through the use of the HAFEM model of a honeycomb sandwich panel, it is shown that the structural responses of the panel converge asymptotically to flexural waves in the low audible frequency region, core shear waves in the high audible to ultrasonic frequency region, and skin flexural waves in the high ultrasonic frequency region. Coincident frequencies occur at the transition region from the flexural to core shear wave behaviors. From the TL sensitivities of various panel design parameters, the most dominant design parameters contributing to the TL results are determined as a function of frequency. In order to improve the acoustic performance of the honeycomb sandwich panel while satisfying weight and strength requirements, a new double core honeycomb sandwich panel is designed to have the same mass per unit area as the baseline single core panel but have a larger equivalent flexural stiffness than that of the baseline panel.

References

References
1.
Kurtze
,
K.
, and
Watters
,
B. G.
,
1959
, “
New Wall Design for High Transmission Loss or High Damping
,”
J. Acoust. Soc. Am.
,
31
(
6
), pp.
739
748
.10.1121/1.1907780
2.
Dym
,
C. L.
, and
Lang
,
M. A.
,
1974
, “
Transmission of Sound Through Sandwich Panels
,”
J. Acoust. Soc. Am.
,
56
(
5
), pp.
1523
1532
.10.1121/1.1903474
3.
Dym
,
C. L.
,
Ventres
,
C. S.
, and
Lang
,
M. A.
,
1976
, “
Transmission of Sound Through Sandwich Panels: A Reconsideration
,”
J. Acoust. Soc. Am.
,
59
(
2
), pp.
364
367
.10.1121/1.380871
4.
Moore
,
J. A.
,
1975
, “
Sound Transmission Loss Characteristics of Three Layer Composite Wall Construction
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
5.
Moore
,
J. A.
, and
Lyon
,
R. H.
,
1991
, “
Sound Transmission Loss Characteristics of Sandwich Panel Constructions
,”
J. Acoust. Soc. Am.
,
89
(
2
), pp.
777
791
.10.1121/1.1894638
6.
Nilsson
,
A. C.
,
1990
, “
Wave Propagation In and Sound Transmission Through Sandwich Plates
,”
J. Sound Vib.
,
138
(
1
), pp.
73
94
.10.1016/0022-460X(90)90705-5
7.
Kim
,
Y. K.
, and
Bolton
,
J. S.
,
2003
, “
Sound Transmission Through Lined, Composite Fuselage Structure: Formulation of Anisotropic Poroelastic Theory
,”
Proceedings of NOISE-CON 2003
, Cleveland, OH, June 23–25.
8.
Kim
,
J. Y.
, and
Bolton
,
J. S.
,
2003
, “
Sound Transmission Through Lined, Composite Fuselage Structure: Honeycomb Sandwich Panel and Lining Treatment
,”
Proceedings of Inter-Noise 2003
, Seoul, Korea, August 25–28.
9.
Zhou
,
R.
, and
Crocker
,
M. J.
,
2010
, “
Sound Transmission Characteristics of Asymmetric Sandwich Panels
,”
ASME J. Vibr. Acoust.
,
132
, p.
031012
.10.1115/1.4000786
10.
Ramakrishnan
,
J. V.
, and
Koval
,
L. R.
,
1987
, “
A Finite Element Model for Sound Transmission Through Laminated Composite Plate
,”
J. Sound Vib.
,
112
(
3
), pp.
433
446
.10.1016/S0022-460X(87)80109-8
11.
Papadopoulos
,
C. I.
,
2002
, “
Development of an Optimized, Standard-Compliant Procedure to Calculate Sound Transmission Loss: Design of Transmission Rooms
,”
Appl. Acoust.
,
63
(
9
), pp.
1003
1029
.10.1016/S0003-682X(02)00005-1
12.
Papadopoulos
,
C. I.
,
2010
, “
Development of an Optimized, Standard Compliant Procedure to Calculate Sound Transmission Loss: Numerical Measurements
,”
Appl. Acoust.
,
64
(
11
), pp.
1069
1085
.10.1016/S0003-682X(03)00066-5
13.
Tee
,
K. F.
,
Spadoni
,
A.
,
Scarpa
,
F.
, and
Ruzzene
,
M.
,
2010
, “
Wave Propagation in Auxetic Tetrachiral Honeycombs
,”
ASME J. Vibr. Acoust.
,
132
, p.
031007
.10.1115/1.4000785
14.
Pates
,
C. S.
,
1995
, “
Sound–Structure Interaction Analysis of Composite Panels Using Coupled Boundary and Finite Element Methods
,”
J. Acoust. Soc. Am.
,
98
(
2
), pp.
1216
1221
.10.1121/1.413620
15.
Coyette
,
J. P.
,
1999
, “
The Use of Finite-Element and Boundary-Element Models for Predicting the Vibro-Acoustic Behaviour of Layered Structures
,”
Adv. Eng.Software
,
30
, pp.
133
139
.10.1016/S0965-9978(96)00041-5
16.
Cali
,
C.
,
Citarella
,
R.
, and
Galasso
,
A.
,
2001
, “
Transmission Loss Assessment by Integrated FEM-BEM Methodology
,”
Proceedings of the Tenth International Conference on Computational Methods and Experimental Measurements
,
Alicante, Spain
, June 4–6.
17.
Price
,
A. J.
, and
Crocker
,
M. J.
,
1970
, “
Sound Transmission Through Double Panels Using Statistical Energy Analysis
,”
J. Acoust. Soc. Am.
,
49
(
3A
), pp.
683
693
.10.1121/1.1911951
18.
Minten
,
M.
,
Cops
,
A.
, and
Wijnants
,
F.
,
1987
, “
The Sound Transmission Loss of a Single Panel Measured With the Two-Microphone and the Conventional Method Comparison With the Statistical Energy Analysis Model
,”
Appl. Acoust.
,
22
(
4
), pp.
281
295
.10.1016/0003-682X(87)90045-4
19.
Waterhouse
,
R. V.
,
1955
, “
Interference Patterns in Reverberant Sound Fields
,”
J. Acoust. Soc. Am.
,
27
, pp.
247
258
.10.1121/1.1907509
20.
Wang
,
T.
,
Li
,
S.
,
Rajaram
,
S.
, and
Nutt
,
S. R.
,
2010
, “
Predicting the Sound Transmission Loss of Sandwich Panels by Statistical Energy Analysis Approach
,”
ASME J. Vibr. Acoust.
,
132
(
1
), p.
011004
.10.1115/1.4000459
21.
Cheung
,
Y. K.
,
1976
,
Finite Strip Method in Structural Analysis
,
Pergamon
,
New York
.
22.
Kim
,
Y.-J.
, and
Bolton
,
J. S.
,
2003
, “
Analysis of Tire Vibration by Using a Hybrid Two-Dimensional Finite Element Based on Composite Shell Theory
,”
Proceedings of Inter-Noise 2003
, Seoul, Korea, August 25–28.
23.
Dong
,
S.
, and
Nelson
,
R.
,
1972
, “
On Natural Vibrations and Waves in Laminated Orthotropic Plates
,”
J. Appl. Mech.
,
39
, pp.
739
745
.10.1115/1.3422782
24.
Nelson
,
R.
, and
Dong
,
S.
,
1973
, “
High Frequency Vibrations and Waves in Laminated Orthotropic Plates
,”
ASME J. Vibr. Acoust.
,
30
(
1
), pp.
33
44
.10.1016/S0022-460X(73)80048-3
25.
Shorter
,
P.
,
2004
, “
Wave Propagation and Damping in Linear Viscoelastic Laminates
,”
J. Acoust. Soc. Am.
,
115
(
5
), pp.
1917
1925
.10.1121/1.1689342
26.
Kim
,
Y.-J.
,
2006
, “
Identification of Sound Transmission Characteristics of Honeycomb Sandwich Panels Using Hybrid Analytical/One-Dimensional Finite Element Method
,”
Proceedings of Inter-Noise 2006
,
Honolulu, HI
, December 3–6.
27.
Kim
,
Y.-J.
, and
Han
,
J. H.
,
2011
, “
Acoustical Characteristics of Honeycomb Sandwich Composite Panels
,”
161st Meeting of the Acoustical Society of America
,
Seattle, WA
, May 23–27.
28.
Denli
,
H.
,
Sun
,
J. Q.
, and
Chou
,
T. W.
,
2005
, “
Minimization of Acoustic Radiation From Composite Sandwich Beam Structures
,”
AIAA J.
,
43
(
11
), pp.
2337
2341
.10.2514/1.17304
29.
Denli
,
H
, and
Sun
,
J. Q.
,
2007
, “
Structural-Acoustic Optimization of Sandwich Structures With Cellular Cores for Minimum Sound Radiation
,”
J. Sound Vib.
,
301
, pp.
93
105
.10.1016/j.jsv.2006.09.025
30.
Denli
,
H.
, and
Sun
,
J. Q.
,
2008
, “
Structural Acoustic Optimization of Sandwich Cylindrical Shells for Minimum Interior Sound Transmission
,”
J. Sound Vib.
,
316
, pp.
32
49
.10.1016/j.jsv.2008.02.027
31.
Denli
,
H.
, and
Sun
,
J. Q.
,
2008
, “
Optimization of Boundary Supports for Sound Radiation Reduction of Vibrating Structures
,”
ASME J. Vibr. Acoust.
,
130
(
1
), p.
011007.
10.1115/1.2776345
32.
Denli
,
H.
, and
Sun
,
J. Q.
,
2007
, “
Structural-Acoustic Optimization of Composite Sandwich Structures: A Review
,”
Shock Vib. Dig.
,
39
(
3
), pp.
189
200
.10.1177/0583102406074086
33.
Fahy
,
F.
,
1987
,
Sound and Structural Vibration
,
Academic
,
New York
.
34.
Soedel
,
W.
,
1993
,
Vibrations of Shells and Plates
,
Marcel Dekker
,
New York
.
35.
Williams
,
E. G.
,
1999
,
Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography
,
Academic
,
London
.
36.
Williams
,
E. G.
,
1995
, “
Supersonic Acoustic Intensity
,”
J. Acoust. Soc. Am.
,
97
(
1
), pp.
121
127
.10.1121/1.412991
You do not currently have access to this content.