A horizontal axis wind turbine blade in steady rotation endures cyclic transverse loading due to wind shear, tower shadowing and gravity, and a cyclic gravitational axial loading at the same fundamental frequency. These direct and parametric excitations motivate the consideration of a forced Mathieu equation. This equation with cubic nonlinearity is analyzed for resonances by using the method of multiple scales. Superharmonic and subharmonic resonances occur. The effect of various parameters on the response of the system is demonstrated using the amplitude-frequency curve. The order-two superharmonic resonance persists for the linear system. While the order-two subharmonic response level is dependent on the ratio of parametric excitation and damping, nonlinearity is essential for the order-two subharmonic resonance. Order-three resonances are present in the system as well and, to first order, they are similar to those of the Duffing equation.

References

References
1.
Ramakrishnan
,
V.
, and
Feeny
,
B. F.
,
2011
, “
In-Plane Nonlinear Dynamics of Wind Turbine Blades
,”
ASME International Design Engineering Technical Conferences, 23rd Biennial Conference on Vibration and Noise
, Paper No. DETC2011-48219 (CDROM).
2.
Rhoads
,
J. F.
, and
Shaw
,
S. W.
,
2010
, “
The Impact of Nonlinearity on Degenerate Parametric Amplifiers
,”
Appl. Phys. Lett.
,
96
(
23
), p.
234101
.10.1063/1.3446851
3.
Rhoads
,
J. F.
,
Miller
,
N. J.
,
Shaw
,
S. W.
, and
Feeny
,
B. F.
,
2008
, “
Mechanical Domain Parametric Amplification
,”
ASME J. Vibr. Acoust.
,
130
(
6
), p.
061006
.10.1115/1.2980382
4.
Pandey
,
M.
,
Rand
,
R. H.
, and
Zehnder
,
A. T.
,
2007
, “
Frequency Locking in a Forced Mathieu-van der Pol-Duffing System
,”
Nonlinear Dyn.
,
54
(
1–2
), pp.
3
12
.10.1007/s11071-007-9238-x
5.
Month
,
L. A.
, and
Rand
,
R. H.
,
1982
, “
Bifurcation of 4-1 Subharmonics in the Non-Linear Mathieu Equation
,”
Mech. Res. Commun.
,
9
(
4
), pp.
233
240
.10.1016/0093-6413(82)90072-6
6.
Newman
,
W. I.
,
Rand
,
R. H.
, and
Newman
,
A. L.
,
1999
, “
Dynamics of a Nonlinear Parametrically Excited Partial Differential Equation
,”
Chaos
,
9
(
1
), pp.
242
253
.10.1063/1.166397
7.
Ng
,
L.
, and
Rand
,
R.
,
2002
, “
Bifurcations in A Mathieu Equation With Cubic Nonlinearities
,”
Chaos, Solitons Fractals
,
14
(
2
), pp.
173
181
.10.1016/S0960-0779(01)00226-0
8.
Belhaq
,
M.
, and
Houssni
,
M.
,
1999
, “
Quasi-Periodic Oscillations, Chaos and Suppression of Chaos in a Nonlinear Oscillator Driven by Parametric and External Excitations
,”
Nonlinear Dynamics
,
18
(
1
), pp.
1
24
.10.1023/A:1008315706651
9.
Veerman
,
F.
, and
Verhulst
,
F.
,
2009
, “
Quasiperiodic Phenomena in the van der Pol-Mathieu Equation
,”
J. Sound Vib.
,
326
(
1–2
), pp.
314
320
.10.1016/j.jsv.2009.04.040
10.
Arrowsmith
,
D. K.
, and
Mondragón
,
R. J.
,
1999
, “
Stability Region Control for a Parametrically Forced Mathieu Equation
,”
Meccanica
,
34
, pp.
401
410
.10.1023/A:1004727920844
11.
Marathe
,
A.
, and
Chatterjee
,
A.
,
2006
, “
Asymmetric Mathieu Equations
,”
Proc. R. Soc. London
,
462
, pp.
1643
1659
. 10.1098/rspa.2005.1632
12.
McLachlan
,
N.
,
1964
,
Theory and Application of Mathieu Functions
,
Dover
,
New York
.
13.
Hodges
,
D.
, and
Dowell
,
E.
,
1974
, “
Nonlinear Equations of Motion for Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades
,”
NASA Technical Note
D-7818
.
14.
Bhat
,
S. R.
, and
Ganguli
,
R.
,
2004
, “
Validation of Comprehensive Helicopter Aeroelastic Analysis With Experimental Data
,”
Def. Sci. J.
,
54
(
4
), pp.
419
427
.10.1177/1045389X07078964
15.
Wang
,
Y. R.
, and
Peters
,
D. A.
,
1996
, “
The Lifting Rotor Inflow Mode Shapes and Blade Flapping Vibration System Eigen-Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
134
(
1–2
), pp.
91
105
.10.1016/0045-7825(96)01027-4
16.
Rand
,
O.
, and
Barkai
,
S. M.
,
1997
, “
A Refined Nonlinear Analysis of Pre-Twisted Composite Blades
,”
Compos. Struct.
,
39
(
1–2
), pp.
39
54
.10.1016/S0263-8223(97)00035-4
17.
Wendell
,
J.
,
1982
, “
Simplified Aeroelastic Modeling of Horizontal-Axis Wind Turbines
,” Technical Report No. DOE/NASA/3303-3 NASA-CR-168109,
Massachusetts Institute of Technology, Cambridge, MA
.
18.
Kallesøe
,
B. S.
,
2007
, “
Equations of Motion for a Rotor Blade, Including Gravity and Pitch Action
,”
Wind Energy
,
10
(
3
), pp.
209
230
.10.1002/we.217
19.
Caruntu
,
D. I.
,
2008
, “
On Nonlinear Forced Response of Nonuniform Blades
,”
Proceedings of the 2008 ASME Dynamic Systems and Control Conference
, Paper No. DSCC2008-2157,
ASME
.
20.
Chopra
,
I.
and
Dugundji
,
J.
,
1979
, “
Nonlinear Dynamic Response of a Wind Turbine Blade
,”
J. Sound Vibr.
,
63
(
2
), pp.
265
286
.10.1016/0022-460X(79)90883-6
21.
Jonkman
,
J.
,
2010
,
NWTC Design Codes (FAST)
,
November
.
22.
Jonkman
,
J.
,
2003
, “
Modeling of the UAE Wind Turbine for Refinement of Fast Ad
,” Technical Report TP-500-34755,
NREL, Golden
,
CO
.
23.
Ishida
,
Y.
,
Inoue
,
T.
, and
Nakamura
,
K.
,
2009
, “
Vibration of a Wind Turbine Blade (Theoretical Analysis and Experiment Using a Single Rigid Blade Model)
,”
J. Environ. Eng.
,
4
(
2
), pp.
443
454
.10.1299/jee.4.443
24.
Inoue
,
T.
,
Ishida
,
Y.
, and
Kiyohara
,
T.
,
2012
, “
Nonlinear Vibration Analysis of the Wind Turbine Blade (Occurrence of the Superharmonic Resonance in the Out-Of-Plane Vibration of the Elastic Blade)
,”
ASME J. Vibr. Acousti.
,
134
, p.
031009
.10.1115/1.4005829
25.
Nayfeh
,
A. H.
and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley Interscience
,
New York
.
26.
Rand
,
R.
,
2005
,
Lecture Notes on Nonlinear Vibration
, version 52,
Cornell University, Ithaca
,
NY
, available online at http://audiophile.tam.cornell.edu/randdocs/nlvibe52.pdf
You do not currently have access to this content.