Measured vibration signals from rolling element bearings with defects are generally nonstationary, and are multiscale in nature owing to contributions from events with different localization in time and frequency. This paper presents a novel approach to characterize the multiscale signature via empirical mode decomposition (EMD) for rolling bearing localized defect evaluation. Vibration signal measured from a rolling element bearing is first adaptively decomposed by the EMD to achieve a series of usable intrinsic mode functions (IMFs) carrying the bearing health information at multiple scales. Then the localized defect-induced IMF is selected from all the IMFs based on a variance regression approach. The multiscale signature, called multiscale slope feature, is finally estimated from the regression line fitted over logarithmic variances of the IMFs excluding the defect IMF. The presented feature reveals the pattern of energy transfer among multiple scales due to localized defects, representing an inherent self-similar signature of the bearing health information that is embedded on multiple analyzed scales. Experimental results verify the performance of the proposed multiscale feature, and further discussions are provided.

References

References
1.
Lei
,
Y.
,
He
,
Z.
, and
Zi
,
Y.
,
2009
, “
A Combination of WKNN to Fault Diagnosis of Rolling Element Bearings
,”
ASME J. Vibr. Acoust.
,
131
,
p.
064502
.10.1115/1.4000478
2.
Kappaganthu
,
K.
, and
Nataraj
,
C.
,
2011
, “
Feature Selection for Fault Detection in Rolling Element Bearings Using Mutual Information
,”
ASME J. Vibr. Acoust.
,
133
,
p.
061001
.10.1115/1.4003400
3.
Al-Raheem
,
K. F.
,
Roy
,
A.
,
Ramachandran
,
K. P.
,
Harrison
,
D. K.
, and
Grainger
,
S.
,
2008
, “
Application of the Laplace-Wavelet Combined With ANN for Rolling Bearing Fault Diagnosis
,”
ASME J. Vibr. Acoust.
,
130
,
p.
051007
.10.1115/1.2948399
4.
Lou
,
X. S.
, and
Loparo
,
K. A.
,
2004
, “
Bearing Fault Diagnosis Based on Wavelet Transform and Fuzzy Inference
,”
Mech. Syst. Signal Process.
,
18
,
pp.
1077
1095
.10.1016/S0888-3270(03)00077-3
5.
Toersen
,
H.
,
1998
, “
Application of an Envelope Technique in the Detection of Ball Bearing Defects in a Laboratory Experiment
,”
Tribo Test
,
4
,
pp.
297
308
. 10.1002/tt.3020040306
6.
Tse
,
P. W.
,
Peng
,
Y. H.
, and
Yam
,
R
,
2001
, “
Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities
,”
ASME J. Vibr. Acoust.
,
123
,
pp.
303
310
.10.1115/1.1379745
7.
Lei
,
Y.
,
Lin
,
J.
,
He
,
Z.
, and
Zi
,
Y.
,
2011
, “
Application of an Improved Kurtogram Method for Fault Diagnosis of Rolling Element Bearings
,”
Mech. Syst. Signal Process.
,
25
,
pp.
1738
1749
.10.1016/j.ymssp.2010.12.011
8.
Zhang
,
L.
,
Gao
,
R. X.
, and
Lee
,
K. B.
,
2006
, “
Spindle Health Diagnosis Based on Analytic Wavelet Enveloping
,”
IEEE Trans. Instrum. Meas.
,
55
,
pp.
1850
1858
.10.1109/TIM.2006.880261
9.
Yan
,
R.
, and
Gao
,
R. X.
,
2008
, “
Rotary Machine Health Diagnosis Based on Empirical Mode Decomposition
,”
ASME J. Vibr. Acoust.
,
130
,
p.
021007
.10.1115/1.2827360
10.
Yan
,
R.
,
Gao
,
R. X.
, and
Wang
,
C.
,
2009
, “
Experimental Evaluation of a Unified Time-Scale-Frequency Technique for Bearing Defect Feature Extraction
,”
ASME J. Vibr. Acoust.
,
131
,
p.
041012
.10.1115/1.3147125
11.
Li
,
P.
,
He
,
Q.
, and
Kong
,
F.
,
2010
, “
An Approach for Fault Diagnosis of Bearings Using Wavelet-Based Fractal Analysis
,”
Proc. of 2010 IEEE Int. Conf. Information and Automation
,
1
,
pp.
2338
2343
.10.1109/ICINFA.2010.5512434
12.
Yu
,
D.
,
Cheng
,
J.
, and
Yang
,
Y.
,
2005
, “
Application of EMD Method and Hilbert Spectrum to the Fault Diagnosis of Roller Bearings
,”
Mech. Syst. Signal Process.
,
19
,
pp.
259
270
.10.1016/S0888-3270(03)00099-2
13.
Rai
,
V. K.
, and
Mohanty
,
A. R.
,
2007
, “
Bearing Fault Diagnosis Using FFT of Intrinsic Mode Functions in Hilbert–Huang Transform
,”
Mech. Syst. Signal Process.
,
21
,
pp.
2607
2615
.10.1016/j.ymssp.2006.12.004
14.
Fan
,
X.
, and
Zuo
,
M. J.
,
2008
, “
Machine Fault Feature Extraction Based on Intrinsic Mode Functions
,”
Meas. Sci. Technol.
,
19
,
p.
045105
.10.1088/0957-0233/19/4/045105
15.
Wu
,
T. Y.
,
Chung
,
Y. L.
, and
Liu
,
C. H.
,
2010
, “
Looseness Diagnosis of Rotating Machinery Via Vibration Analysis Through Hilbert–Huang Transform Approach
,”
ASME J. Vibr. Acous.
,
132
,
p.
031005
.10.1115/1.4000782
16.
Kilundu
,
B.
,
Chiementin
,
X.
, and
Dehombreux
,
P.
,
2011
, “
Singular Spectrum Analysis for Bearing Defect Detection
,”
ASME J. Vibr. Acoust.
133
,
p.
051007
.10.1115/1.4003938
17.
He
,
Q.
,
Liu
,
Y.
, and
Kong
,
F.
,
2011
, “
Machine Fault Signature Analysis by Midpoint-Based Empirical Mode Decomposition
,”
Meas. Sci. Technol.
,
22
,
p.
015702
.10.1088/0957-0233/22/1/015702
18.
He
,
Q.
,
Su
,
S.
, and
Du
,
R.
,
2008
, “
Separating Mixed Multi-Component Signal With an Application in Mechanical Watch Movement
,”
Digit. Signal Process.
,
18
,
pp.
1013
1028
.10.1016/j.dsp.2008.04.009
19.
Bakshi
,
B. R.
,
1999
, “
Multiscale Analysis and Modeling Using Wavelets
,”
J. Chemom.
,
13
,
pp.
415
434
,10.1002/(SICI)1099-128X(199905/08)13:3/4<415::AID-CEM544>3.0.CO;2-8
20.
Huang
,
N. E.
,
Shen
,
Z.
, and
Long
,
S. R.
,
1998
, “
The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. London, Ser. A
,
454
,
pp.
903
995
.10.1098/rspa.1998.0193
21.
Flandrin
,
P.
,
Rilling
,
G.
, and
Goncalves
,
P.
,
2004
, “
Empirical Mode Decomposition as a Filter Bank
,”
IEEE Signal Process. Lett.
,
11
,
pp.
112
114
.10.1109/LSP.2003.821662
22.
Boudraa
,
A. O.
,
Cexus
,
J. C.
, and
Saidi
,
Z.
,
2004
, “
EMD-Based Signal Noise Reduction
,”
Int. J. Adapt Control Signal Process.
,
1
,
pp.
33
37
.
23.
Sekine
,
M.
,
Tamura
,
T.
,
Akay
,
M.
,
Fujimoto
,
T.
,
Togawa
,
T.
, and
Fukui
,
Y.
,
2002
, “
Discrimination of Walking Patterns Using Wavelet-Based Fractal Analysis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
10
,
pp.
188
196
.10.1109/TNSRE.2002.802879
24.
Loutridis
,
S. J.
,
2008
, “
Self-Similarity in Vibration Time Series: Application to Gear Fault Diagnostics
,”
ASME J. Vibr. Acoust.
,
130
, p.
031004
.10.1115/1.2827449
25.
Flandrin
,
P.
,
1992
, “
Wavelet Analysis and Synthesis of Fractional Brownian Motion
,”
IEEE Trans. Inf. Theory
,
38
,
pp.
910
917
.10.1109/18.119751
You do not currently have access to this content.