This paper introduces approximate entropy (ApEn) to address a nonlinear feature parameter of acoustic emission (AE) signal for the defect detection of rolling element bearings. With respect to AE signal, parameter selection of ApEn calculation is investigated, and appropriate parameters are suggested. Finally, an experimental study is presented to investigate the influence of various running conditions, i.e., radial load, rotating speed and defect size, on ApEn calculation. The results demonstrate that ApEn provides an effective measure for AE analysis and can be used as an effective feature parameter of AE signal for the defect detection of rolling element bearings.

References

References
1.
Tandon
,
N.
, and
Nakra
,
B. C.
,
1992
, “
Vibration and Acoustic Monitoring Technique for the Detection of Defects in Rolling Element Bearings—A Review
,”
Shock Vib.
,
24
, pp.
3
11
.10.1177/058310249202400303
2.
Tandon
,
N.
, and
Choudhury
,
A.
,
1999
, “
A Review of Vibration and Acoustic and Acoustic Measurement Methods for the Detection of Defects in Rolling Element Bearing
,”
Tribol. Int.
,
32
, pp.
469
480
.10.1016/S0301-679X(99)00077-8
3.
Behzad
,
M.
,
AlandiHallaj
,
A.
,
Rohani Bastami
,
A.
,
Mba
,
D.
,
Eftekharnejad
,
B.
, and
Charnley
,
B.
,
2009
, “
Defect Size Estimation in Rolling Element Bearings Using Vibration Time Waveform
,”
Insight
,
51
(
8
), pp.
426
430
.10.1784/insi.2009.51.8.426
4.
Tse
,
P. W.
,
Peng
,
Y. H.
, and
Yam
,
R.
,
2011
, “
Wavelet Analysis and Envelope Detection For Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities
,”
Trans. ASME, J. Vib. Acoust.
,
123
, pp.
303
310
.10.1115/1.1379745
5.
Ono
,
K.
, and
Okada
,
Y.
,
1998
, “
Analysis of Ball Bearing Vibrations Caused by Outer Race Waviness
,”
Trans. ASME, J. Vib. Acoust.
,
120
, pp.
901
908
.10.1115/1.2893918
6.
He
,
Y.
,
Zhang
,
X.
, and
Friswell
,
M. I.
,
2009
, “
Defect Diagnosis for Rolling Element Bearings Using Acoustic Emission
,”
Trans. ASME, J. Vib. Acoust.
,
131
(
6
), p.
061012
.10.1115/1.4000480
7.
Balerston
,
H. L.
,
1996
, “
The Detection of Incipient Failure in Bearings
,”
Mater. Eval.
,
27
, pp.
121
128
.
8.
Mba
,
D.
,
Raj
,
B. K.
, and
Rao
,
N.
,
2006
, “
Development of Acoustic Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines: Bearings, Pumps, Gearboxes, Engines, and Rotating Structures
,”
Shock Vib. Dig.
,
38
, pp.
3
16
.10.1177/0583102405059054
9.
Price
,
E. D.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
,
2005
, “
Detection of Severe Sliding and Pitting Fatigue Wear Regimes Through the Use of Broadband Acoustic Emission
,”
J. Eng. Tribol.
,
219
, pp.
85
98
.10.1243/135065005X9817
10.
Morhain
,
A.
, and
Mba
,
D.
,
2003
, “
Bearing Defect Diagnosis and Acoustic Emission
,”
J. Eng. Tribol.
,
217
, pp.
257
272
. 10.1243/135065003768618614
11.
Elforjani
,
M.
, and
Mba
,
D.
,
2008
, “
Detecting the Onset, Propagation and Location of Non-Artificial Defects in a Slow Rotating Thrust Bearing With Acoustic Emission
,”
Insight
,
50
(
5
), pp.
264
268
.10.1784/insi.2008.50.5.264
12.
Al-Ghamdi
,
A. M.
,
Cole
,
P.
,
Such
,
R.
, and
Mba
,
D.
,
2004
, “
Estimation of Bearing Defect Size With Acoustic Emission
,”
Insight
,
46
(
12
), pp.
758
761
.10.1784/insi.46.12.758.54491
13.
Rao
,
S. V. S.
, and
Subramanyam
,
B.
,
2008
, “
Analysis of Acoustic Emission Signals Using Wavelet Transformation Technique
,”
Def. Sci. J.
,
58
(
4
), pp.
559
564
.
14.
Tang
,
Y-W.
,
Tai
,
C-C.
,
Su
,
C-C.
,
Chen
,
C-Y.
, and
Chen
,
J-F.
,
2010
, “
A Correlated Empirical Mode Decomposition Method for Partial Discharge Signal Denoising
,”
Meas. Sci. Technol.
,
21
, p.
085106
.10.1088/0957-0233/21/8/085106
15.
Rosa
,
J. J. G.
,
Piotrkowski
,
R.
, and
Ruzzante
,
J. E.
,
2007
, “
Wavelet Power, Entropy and Bispectrum Applied to AE Signals for Damage Identification and Evaluation of Corroded Galvanized Steel
,”
IEEE Trans. Instrum. Meas.
,
56
(
6
), pp.
2312
2321
.10.1109/TIM.2007.907945
16.
He
,
Y.
,
Yin
,
X.
, and
Chu
,
F.
,
2008
, “
Modal Analysis of Rubbing Acoustic Emission for Rotor-Bearing System Based on Reassigned Wavelet Scalogram
,”
Trans. ASME, J. Vib. Acoust.
,
130
, p.
061009
.10.1115/1.2981091
17.
Surgeon
,
M.
, and
Wevers
,
M.
,
1999
, “
Modal Analysis of Acoustic Emission Signals from CFRP Laminates
,”
NDT&E Int.
,
32
, pp.
311
322
.10.1016/S0963-8695(98)00077-2
18.
Rolo-Naranjo
,
A.
, and
Montesino-Otero
,
M. E.
,
2005
, “
A Method for the Correlation Dimension Estimation for On-Line Condition Monitoring of Large Rotating Machinery
,”
Mech. Syst. Signal Process.
,
19
(
5
), pp.
939
954
.10.1016/j.ymssp.2004.08.001
19.
Castanier
,
M. P.
, and
Pierre
,
C.
,
1997
, “
Predicting Localization via Lyapunov Exponent Statistics
,”
J. Sound Vib.
,
203
(
1
), pp.
151
157
.10.1006/jsvi.1996.0806
20.
Pincus
,
S. M.
,
1991
, “
Approximate Entropy as a Measure of System Complexity
,”
Proc. Natl. Acad. Sci. U.S.A.
,
88
(
6
), pp.
2297
2301
.10.1073/pnas.88.6.2297
21.
Smith
,
L. A.
,
1998
, “
Intrinsic Limits on Dimension Calculations
,”
Phys. Lett. A
,
133
(
6
), pp.
283
288
.10.1016/0375-9601(88)90445-8
22.
Pincus
,
S. M.
,
2001
, “
Assessing Serial Irregularity and its Implications for Health
,”
Ann. N.Y. Acad. Sci.
,
954
, pp.
245
267
.10.1111/j.1749-6632.2001.tb02755.x
23.
Abasolo
,
D.
,
Hornero
,
R.
,
Espinob
,
P.
,
Poza
,
J.
,
Sanchez
,
C. I.
, and
Rosa
,
R. D. L.
,
2005
, “
Analysis of Regularity in the EEG Background Activity of Alzheimer's Disease Patients With Approximate Entropy
,”
Clin. Neurophysiol.
,
116
, pp.
1826
1834
.10.1016/j.clinph.2005.04.001
24.
Ahmad
,
S. A.
, and
Chappell
,
P. H.
,
2008
, “
Moving Approximate Entropy Applied to Surface Electromyographic Signals
,”
Biomed. Signal Process. Control
,
3
, pp.
88
93
.10.1016/j.bspc.2007.10.003
25.
Yan
,
R.
, and
Gao
,
R. X.
,
2007
, “
Approximate Entropy as a Diagnostic Tool for Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
21
, pp.
824
839
.10.1016/j.ymssp.2006.02.009
26.
Fu
,
L.
,
He
,
Z. Y.
,
Mai
,
R. K.
, and
Qian
,
Q. Q.
,
2008
, “
Application of Approximate Entropy to Fault Signal Analysis in Electric Power System
,”
Proceedings of the Chinese Society of Electric Engineering
,
28
(
28
), pp.
68
73
.
27.
Xu
,
Y. G.
,
Li
,
L. J.
, and
He
,
Z. J.
,
2002
, “
Approximate Entropy and its Applications in Mechanical Fault Diagnosis
,”
Chin. J. Inf. Control
,
31
(
6
), pp.
547
551
.
28.
Lin
,
L.
, and
Chu
,
F.
,
2011
, “
Approximate Entropy as Acoustic Emission Feature Parametric Data for Crack Detection
,”
Nondestr. Test. Eval.
,
26
(
2
), pp.
119
128
.10.1080/10589759.2010.521825
29.
Mitrakovic
,
D.
,
Grabec
,
I.
, and
Sedmak
,
S.
,
1985
, “
Simulation of AE Signals and Signal Analysis Systems
,”
Ultrasonics
,
9
, pp.
227
232
.10.1016/0041-624X(85)90018-6
You do not currently have access to this content.