This work examines the surface/interface effect on the dynamic stress around a cylindrical nanoinclusion embedded in an elastic semi-infinite slab subjected to antiplane shear waves, and the nanosize effect is considered. The wave function expansion method is employed to express the wave fields in the nanosized structure. The traction free boundary conditions at the three edges of this structure are considered and satisfied by using the image method. The analytical and numerical solutions of the dynamic stress concentration factor around the nanoinclusion are presented. Analyses show that the three edges of the nanosized structure manifest different effects of the dynamic stress around the nanoinclusion. The size effect is also related to the interface properties, the wave frequency of incident waves, and the material properties ratio of the nanoinclusion to matrix. To show the accuracy of the results for certain given parameters, comparison with the existing results is also given.

References

References
1.
Tan
,
E. P. S.
, and
Lim
,
C. T.
,
2006
,
Mechanical Characterization of Nanofibers—A Review
,”
Comp. Sci. Tech.
,
66
,
pp.
1102
1111
.10.1016/j.compscitech.2005.10.003
2.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Luo
,
Z. Y.
,
2005
, “
Stress Concentration Tensors of Inhomogeneities With Interface Effects
,”
Mech. Mater.
,
37
,
pp.
723
736
.10.1016/j.mechmat.2004.07.004
3.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
,
1975
, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. An.
,
57
,
pp.
291
323
.10.1007/BF00261375
4.
Gurtin
,
M. E.
,
Weissmüller
,
J.
, and
Larché
,
F.
,
1998
, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
,
78
,
pp.
1093
1109
.10.1080/01418619808239977
5.
Li
,
Z. R.
,
Lim
,
C. W.
, and
He
,
L. H.
,
2005
, “
Stress Concentration Around a Nano-Scale Spherical Cavity in Elastic Media: Effect of Surface Stress
,”
Eur. J. Mech. A-Solid.
,
25
,
pp.
260
270
.10.1016/j.euromechsol.2005.09.005
6.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
,
2003
, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
,
82
,
pp.
535
537
.10.1063/1.1539929
7.
Luo
,
J.
, and
Wang
,
X.
,
2009
, “
On the Anti-Plane Shear of an Elliptic Nano Inhomogeneity
,”
Eur. J. Mech. A-Solid.
,
28
,
pp.
926
934
.10.1016/j.euromechsol.2009.04.001
8.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
, and
Stolarski
,
H. K.
,
2008
, “
Multiple Interacting Circular Nano-Inhomogeneities With Surface/Interface Effects
,”
J. Mech. Phys. Solid.
,
56
,
pp.
2298
2327
.10.1016/j.jmps.2008.01.001
9.
Guz
,
I. A.
, and
Rushchitsky
,
J. J.
,
2007
, “
Computational Simulation of Harmonic Wave Propagation in Fibrous Micro- and Nanocomposites
,”
Comp. Sci. Tech.
,
67
,
pp.
861
866
.10.1016/j.compscitech.2006.01.032
10.
Fang
,
X. Q.
,
Liu
,
J. X.
,
Yang
,
S. P.
, and
Zhang
,
L. L.
,
2010
, “
Effect of Surface/Interface on the Dynamic Stress of Two Interacting Cylindrical Nano-Inhomogeneities Under Compressional Waves
,”
Thin Solid Films
,
518
,
pp.
6938
6944
.10.1016/j.tsf.2010.06.022
11.
Ru
,
Y.
,
Wang
,
G. F.
, and
Wang
,
T. J.
,
2009
, “
Diffractions of Elastic Waves and Stress Concentration Near a Cylindrical Nano-Inclusion Incorporating Surface Effect
,”
ASME J. Vib. Acous.
,
131
,
p.
061011
.10.1115/1.4000479
12.
Deng
,
Q. T.
, and
Yang
,
Z. C.
,
2012
, “
Scattering of S0 and A0 Lamb Modes in a Plate With Multiple Damage
,”
ASME J. Vib. Acous.
,
134
,
p.
011004
.10.1115/1.4005024
13.
Mi
,
C.
, and
Kouris
,
D.
,
2006
, “
Nanoparticles Under the Influence of Surface/Interface Elasticity
,”
J. Mech. Mater. Struct.
,
1
,
pp.
763
791
.10.2140/jomms.2006.1.763
14.
Jammes
,
M.
,
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2009
, “
Multiple Circular Nano-Inhomogeneities and/or Nano-Pores in One of Two Joined Isotropic Elastic Half-Planes
,”
Eng. Anal. Bound. Elem.
,
33
,
pp.
233
248
.10.1016/j.enganabound.2008.03.010
15.
Avazmohammadi
,
R.
,
Yang
,
F.
, and
Abbasion
,
S.
,
2009
, “
Effect of Interface Stresses on the Elastic Deformation of an Elastic Half-Plane Containing an Elastic Inclusion
,”
Int. J. Solid. Struct.
,
46
,
pp.
2897
2906
.10.1016/j.ijsolstr.2009.03.012
16.
Pao
,
Y. H.
, and
Mow
,
C. C.
,
1973
,
Diffraction of Elastic Waves and Dynamic Stress Concentration
,
Crane-Russak
,
New York
.
You do not currently have access to this content.