Vortex-induced motion (VIM) is a specific way for naming the vortex-induced vibration (VIV) acting on floating units. The VIM phenomenon can occur in monocolumn production, storage and offloading system (MPSO) and spar platforms, structures presenting aspect ratio lower than 4 and unity mass ratio, i.e., structural mass equal to the displaced fluid mass. These platforms can experience motion amplitudes of approximately their characteristic diameters, and therefore, the fatigue life of mooring lines and risers can be greatly affected. Two degrees-of-freedom VIV model tests based on cylinders with low aspect ratio and small mass ratio have been carried out at the recirculating water channel facility available at NDF-EPUSP in order to better understand this hydro-elastic phenomenon. The tests have considered three circular cylinders of mass ratio equal to one and different aspect ratios, respectively L/D = 1.0, 1.7, and 2.0, as well as a fourth cylinder of mass ratio equal to 2.62 and aspect ratio of 2.0. The Reynolds number covered the range from 10 000 to 50 000, corresponding to reduced velocities from 1 to approximately 12. The results of amplitude and frequency in the transverse and in-line directions were analyzed by means of the Hilbert-Huang transform method (HHT) and then compared to those obtained from works found in the literature. The comparisons have shown similar maxima amplitudes for all aspect ratios and small mass ratio, featuring a decrease as the aspect ratio decreases. Moreover, some changes in the Strouhal number have been indirectly observed as a consequence of the decrease in the aspect ratio. In conclusion, it is shown that comparing results of small-scale platforms with those from bare cylinders, all of them presenting low aspect ratio and small mass ratio, the laboratory experiments may well be used in practical investigation, including those concerning the VIM phenomenon acting on platforms.

References

References
1.
van Dijk
,
R. R.
,
Magee
,
A.
,
Perryman
,
S.
, and
Gebara
,
J.
,
2003
, “
Model Test Experience on Vortex Induced Vibrations of Truss Spars
,”
Proceedings of the Offshore Technology Conferece (OTC 2003)
,
Houston, Texas
,
OTC2003-15242
.
2.
Finn
,
L. D.
,
Maher
,
J. V.
, and
Gupta
,
H.
,
2003
, “
The Cell Spar and Vortex Induced Vibrations
,”
Proceedings of the Offshore Technology Conference (OTC 2003)
,
Houston, Texas
,
OTC2003-15244
.
3.
Irani
,
M.
, and
Finn
,
L.
,
2004
, “
Model Testing for Vortex Induced Motions of Spar Platforms
,”
Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering
,
Vancouver, British Columbia, Canada
,
OMAE2004-51315
.
4.
Finnigan
,
T.
,
Irani
,
M.
, and
van Dijk
,
R. R.
,
2005
, “
Truss Spar VIM in Waves and Currents
,”
Proceedings of the 24th International Conference on Offshore Mechanics and Artic Engineering
,
Halkidiki, Greece
OMAE2005-67054
.
5.
Roddier
,
D.
,
Finnigan
,
T.
, and
Liapis
,
S.
,
2009
, “
Influence of the Reynolds Number on Spar Vortex Induced Motions (VIM): Multiple Scale Model Test Comparisons
,”
Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering
.
Honolulu, Hawaii
,
OMAE2009-79991
.
6.
Wang
,
Y.
,
Yang
,
J.
,
Peng
,
T.
, and
Li
,
X.
,
2009
, “
Model Test Study on Vortex-Induced Motions of a Floating Cylinder
,”
Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering
,
Honolulu, Hawaii
,
OMAE2009-79134
.
7.
Gonçalves
,
R. T.
,
Rosetti
,
G. F.
,
Fujarra
,
A. L. C.
, and
Nishimoto
,
K.
,
2012
, “
An Overview of Relevant Aspects on VIM of Spar and Monocolumn Platforms
,”
J. Offshore Mech. Arct. Eng.
,
134
(
1
),
pp.
0145011
0145017
. 10.1115/1.4003698
8.
Cueva
,
M.
,
Fujarra
,
A. L. C.
,
Nishimoto
,
K.
,
Quadrante
,
L.
, and
Costa
,
A.
,
2006
, “
Vortex Induced Motion: Model Testing of a Monocolumn Floater
,”
Proceedings of the 25th International Conference on Offshore Mechanics and Artic Engineering
,
Hamburg, Germany
,
OMAE2006-92167
.
9.
Fujarra
,
A. L. C.
,
Pesce
,
C. P.
,
Nishimoto
,
K.
,
Cueva
,
M.
, and
Faria
,
F.
,
2007
, “
Non-Stationary VIM of Two Mono-Column Oil Production Platforms
,”
Fifth Conference on Bluff Body Wakes and Vortex-Induced Vibrations, BBVIV5
,
Costa do Sauipe, Bahia, Brazil
.
10.
Gonçalves
,
R. T.
,
Rosetti
,
G.
,
Fujarra
,
A. L. C.
, and
Nishimoto
,
K.
,
2012
, “
Experimental Comparative Study on Vortex-Induced Motion (VIM) of a Monocolumn Platform
,”
J. Offshore Mech. Arct. Eng.
,
134
(
1
),
pp.
0113011
01130115
. 10.1115/1.4003494
11.
Gonçalves
,
R. T.
,
Fujarra
,
A. L. C.
,
Rosetti
,
G. F.
, and
Nishimoto
,
K.
,
2010
, “
Mitigation of Vortex-Induced Motion (VIM) on a Monocolumn Platform: Forces and Movements
,”
J. Offshore Mech. Arct. Eng.
,
132
(
4
),
pp.
0411021
04110216
. 10.1115/1.4001440
12.
Gonçalves
,
R. T.
,
Franzini
,
G. R.
,
Fujarra
,
A. L. C.
, and
Meneghini
,
J. R.
,
2010
, “
Two Degrees-of-Freedom Vortex-Induced Vibration of a Circular Cylinder With Low Aspect Ratio
,”
Symposium on Bluff Body Wakes and Vortex-Induced Vibrations, BBVIV6
,
Capri Island, Italy
.
13.
Pesce
,
C. P.
, and
Fujarra
,
A. L. C.
,
2000
, “
Vortex-Induced Vibrations and Jump Phenomenon: Experiments With a Clamped Flexible Cylinder in Water
,”
Int. J. Offshore Polar Eng.
,
10
,
pp.
26
33
.
14.
Jauvtis
,
N.
, and
Williamson
,
C. H. K.
,
2004
, “
The Effect of Two Degrees of Freedom on Vortex-Induced Vibration at Low Mass and Damping
,
J. Fluid Mech.
,
509
,
pp.
23
62
.10.1017/S0022112004008778
15.
Sanchis
,
A.
,
Saelevik
,
G.
, and
Grue
,
J.
,
2008
, “
Two-Degree-of-Freedom Vortex-Induced Vibrations of a Spring-Mounted Rigid Cylinder With Low Aspect Ratio
,”
J. Fluids Struct.
,
24
,
pp.
907
919
.10.1016/j.jfluidstructs.2007.12.008
16.
Stappenbelt
,
B.
, and
Lalji
,
F.
,
2008
, “
Vortex-Induced Vibration Super-Upper Response Branch Boundaries
,”
Int. J. Offshore Polar Eng.
,
18
,
pp.
99
105
.
17.
Blevins
,
R. D.
, and
Coughran
,
C. S.
,
2009
, “
Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number
,”
J. Fluids Eng.
,
131
(
10
),
pp.
1012021
1012027
.10.1115/1.3222904
18.
Freire
,
C. M.
, and
Meneghini
,
J. R.
,
2010
, “
Experimental Investigation of VIV on a Circular Cylinder Mounted on an Articulated Elastic Base With Two Degrees-of-Freedom
,”
Symposium on Bluff Body Wakes and Vortex-Induced Vibrations, BBVIV6
,
Capri Island, Italy
.
19.
Fujarra
,
A. L. C.
,
Pesce
,
C. P.
,
Flemming
,
F.
, and
Williamson
,
C. H. K.
,
2001
, “
Vortex-Induced Vibration of a Flexible Cantilever
,”
J. Fluids Struct.
,
15
,
pp.
651
658
.10.1006/jfls.2000.0368
20.
Jauvtis
,
N.
, and
Williamson
,
C. H. K.
,
2003
, “
Vortex-Induced Vibration of a Cylinder With Two Degrees of Freedom
,”
J. Fluids Struct.
,
17
,
pp.
1035
1042
.10.1016/S0889-9746(03)00051-3
21.
Flemming
,
F.
, and
Williamson
,
C. H. K.
,
2005
, “
Vortex-Induced Vibrations of a Pivoted Cylinder
,”
J. Fluid Mech.
,
522
,
pp.
215
252
.10.1017/S0022112004001831
22.
Dahl
,
J. M.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2006
, “
Two-Degree-of-Freedom Vortex-Induced Vibrations Using a Force Assisted Apparatus
,”
J. Fluids Struct.
,
22
,
pp.
807
818
.10.1016/j.jfluidstructs.2006.04.019
23.
Leong
,
C. M.
, and
Wei
,
T.
,
2008
, “
Two-Degree-of-Freedom Vortex-Induced Vibration of a Pivoted Cylinder Below Critical Mass Ratio
,”
Proc. R. Soc. A
,
464
,
pp.
2907
2927
. 10.1098/rspa.2007.016610.1098/rspa.2007.0166
24.
Marzouk
,
O. A.
,
2010
, “
Characteristics of the Flow-Induced Vibration and Forces With 1- and 2-DOF Vibrations and Limiting Solid-to-Fluid Density Ratios
,”
J. Vibr. Acoust.
,
132
(
4
),
pp.
0410131
0410139
.10.1115/1.4001503
25.
Franzini
,
G. R.
,
Gonçalves
,
R. T.
,
Fujarra
,
A. L. C.
, and
Meneghini
,
J. R.
,
2010
, “
Experiments of Vortex-Induced Vibration on Rigid and Inclined Cylinders in Two Degrees of Freedom
,”
Symposium on Bluff Body Wakes and Vortex-Induced Vibrations, BBVIV6
,
Capri Island, Italy
.
26.
Freire
,
C. M.
,
Korkischko
,
I.
, and
Meneguini
,
J. R.
,
2009
, “
Development of an Elastic Base With Two Degrees of Freedom for VIV Studies
,”
Proceedings of 20th International Congress of Mechanical Engineering, COBEM 2009
,
Gramado, RS, Brazil
.
27.
Assi
,
G. R.
,
Meneghini
,
J. R.
,
Aranha
,
J. A.
,
Bearman
,
W.
, and
Casaprima
,
E.
,
2006
, “
Experimental Investigation of Flow-Induced Vibration Interference Between Two Circular Cylinders
,”
J. Fluids Struct.
,
22
,
pp.
819
827
.10.1016/j.jfluidstructs.2006.04.013
28.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
,
Krieger, Malabar, FL
, p.
72
.
29.
Gonçalves
,
R. T.
,
Franzini
,
G. R.
,
Rosetti
,
G.
,
Fujarra
,
A. L. C.
, and
Nishimoto
,
K.
,
2012
, “
Analysis Methodology for Vortex-Induced Motion (VIM) of a Monocolumn Platform Applying the Hilbert-Huang Transform Method
,”
J. Offshore Mech. Arct. Eng.
,
134
(
1
),
pp.
0111031
0111037
.
30.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shin
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N. C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,
Proc. R. Soc. London, Ser. A
,
454
,
pp.
903
995
.10.1098/rspa.1998.0193
31.
Fox
,
T. A.
, and
Apelt
,
C. J.
,
1993
, “
Fluid-Induced Loading of Cantilevered Circular Cylinders in a Low-Turbulence Uniform Flow. Part 3: Fluctuating Loads With Aspect Ratios 4 to 25
,”
J. Fluids Struct.
,
7
,
pp.
375
386
.10.1006/jfls.1993.1022
32.
Stappenbelt
,
B.
, and
O'Neill
,
L.
,
2007
, “
Vortex-Induced Vibration of Cylindrical Structures With Low Mass Ratio
,”
Proceedings of the 17th International Offshore and Polar Engineering Conference
,
Lisbon, Portugal
.
33.
Morse
,
T. L.
,
Govardhan
,
R. N.
, and
Williamson
,
C. H. K.
,
2008
, “
The Effect of End Conditions on Vortex-Induced Vibration of Cylinders
,”
J. Fluids Struct.
,
24
,
pp.
1227
1239
.10.1016/j.jfluidstructs.2008.06.004
You do not currently have access to this content.