In this paper, the nonlinear free vibration stochastic characteristic of a smart laminated composite plate having random system properties is presented. The transverse shear effects have been included in the system equation in the frame work of higher order shear deformation theory. The analysis uses the Green-Lagrange nonlinear strain displacement relationship to model geometric nonlinearity. The direct iteration approach is used to handle deterministic geometric nonlinearity, and the perturbation approach is employed to handle the randomness in the system properties. Mean and variance of the random natural frequencies have been obtained by employing a C0 isoparametric nonlinear finite element model. Comparisons with the published results show the accuracy of the proposed procedure. A few results covering various features have been presented for a laminated composite plate with different boundary conditions.

References

References
1.
Pai
,
P. F.
,
Nayfeh
,
A. H.
,
Oh
,
K. D.
, and
Mook
,
T.
,
1993
, “
A Refined Nonlinear Model of Composite Plates With Integrated Piezoelectric Actuators and Sensors
,”
Int. J. Solids Struct.
,
30
(
12
),
pp.
1603
1630
.10.1016/0020-7683(93)90193-B
2.
Gao
,
J. X.
, and
Shen
,
Y. P.
,
2003
, “
Active Control of Geometrically Nonlinear Transient Vibration of Composite Plates With Piezoelectric Actuators
,”
J. Sound Vib.
,
264
(
4
),
pp.
911
928
.10.1016/S0022-460X(02)01189-6
3.
Chattopadhyay
,
A.
,
Kim
,
H. S.
, and
Ghoshal
,
A.
,
2004
, “
Nonlinear Vibration Analysis of Smart Composite Structures With Discrete Delamination Using a Refined Layerwise Theory
,”
J. Sound Vib.
,
273
(
1/2
),
pp.
387
407
.10.1016/S0022-460X(03)00561-3
4.
Huang
,
X. L.
, and
Shen
,
H. S.
,
2005
, “
Nonlinear Free and Forced Vibration of Simply Supported Shear Deformable Laminated Plates With Piezoelectric Actuators
,”
Int. J. Mech. Sci.
,
47
(
2
),
pp.
187
208
.10.1016/j.ijmecsci.2005.01.003
5.
Xia
,
X. K.
, and
Shen
,
H. S.
,
2009
, “
Nonlinear Vibration and Dynamic Response of FGM Plates With Piezoelectric Fiber Reinforced Composite Actuators
,”
Compos. Struct.
,
90
(
2
),
pp.
254
262
.10.1016/j.compstruct.2009.03.018
6.
Lee
,
Y. Y.
, and
Ng
,
C. F.
,
2000
, “
Vibration Control of Composite Plates Under Random Loading Using Piezoelectric Material
,”
J. Aerosp. Eng.
,
214
(
1
),
pp.
9
25
.10.1243/0954410001531881
7.
Singh
,
B. N.
, and
Babu
,
J. B.
,
2009
, “
Thermal Buckling of Laminated Composite Conical Shell Panel With and Without Piezoelectric Layer With Random Material Properties
,”
Int. J. Crashworthiness
,
14
(
1
),
pp.
73
81
.10.1080/13588260802517352
8.
Singh
,
B. N.
,
Vyas
,
N.
, and
Dash
,
P.
,
2009
, “
Stochastic Free Vibration Analysis of Smart Random Composite Plates
,”
Struct. Eng. Mech.
,
31
(
5
),
pp.
481
506
.
9.
Cheng
,
J.
,
Wang
,
B.
, and
Du
,
S. Y.
,
2005
, “
A Theoretical Analysis of Piezoelectric/Composite Anisotropic Laminate With Larger-Amplitude Deflection Effect, Part I: Fundamental Equations
,”
Int. J. Solids Struct.
,
42
(
24/25
),
pp.
6166
6180
.10.1016/j.ijsolstr.2005.04.007
10.
Lee
,
Y. Y.
, and
Guo
,
X.
,
2007
, “
Nonlinear Vibration Suppression of a Composite Panel Subject to Random Acoustic Excitation Using Piezoelectric Actuators
,”
Mech. Syst. Signal Process.
,
21
(
2
),
pp.
1153
1173
.10.1016/j.ymssp.2005.12.004
11.
Jayakumar
,
K.
,
Yadav
,
D.
, and
Nageswara
R. B.
,
2009
, “
Nonlinear Free Vibration Analysis of Simply Supported Piezo-Laminated Plates With Random Actuation Electric Potential Difference and Material Properties
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
4
),
pp.
1646
1663
.10.1016/j.cnsns.2008.02.003
12.
Dash
,
P.
, and
Singh
,
B. N.
,
2009
, “
Nonlinear Free Vibration of Piezoelectric Laminated Plate
,”
Finite Elem. Anal. Design
,
45
(
10
),
pp.
686
694
.10.1016/j.finel.2009.05.004
13.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2001
,
Concepts and Applications of Finite Element Analysis
,
4th ed.
,
John Wiley & Sons
,
New York
.
14.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
,
1989
,
Concepts and Applications of Finite Element Analysis
,
3rd ed.
,
John Wiley & Sons
,
New York
.
15.
Jones
,
R. M.
,
1975
,
Mechanics of Composite Materials
,
2nd ed.
,
Taylor & Francis
,
London
.
16.
Tiersten
,
H. F.
,
1969
,
Linear Piezoelectric Plate Vibrations
,
Plenum Press
,
New York
.
17.
Tanveer
,
M.
, and
Singh
A. V.
,
2010
, “
Nonlinear Forced Vibrations of Laminated Piezoelectric Plates
,”
ASME J. Vibr. Acoust.
,
132
, p.
021005
.10.1115/1.4000768
18.
Zang
,
Z.
, and
Chen
,
S.
,
1991
, “
The Standard Deviations of the Eigen Solutions for Random MDOF Systems
,”
Compos. Struct.
,
39
(
6
),
pp.
603
607
.10.1016/0045-7949(91)90201-V
19.
Heylinger
,
P.
, and
Saravanos
,
D. A.
,
1995
, “
Exact Free-Vibration Analysis of Laminated Plates With Embedded Piezoelectric Layers
,”
J. Acoust. Soc. Am.
,
98
(
3
),
pp.
1547
1557
.10.1121/1.413420
20.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
,
1986
, “
Random Field Finite Elements
,”
Int. J. Numer. Methods. Eng.
,
23
(
10
),
pp.
1831
1845
.10.1002/nme.1620231004
You do not currently have access to this content.