The vibro-acoustic behavior of elastic structures coupled with cavities filled with a heavy fluid can be modeled by using the Finite Element Method. In order to reduce computing time, the Patch Transfer Function (PTF) approach is used to partition the global problem into different sub-problems. Different types of problem partitioning are studied in this paper. Partitioning outside the near field of structures to reduce the number of patches of the coupling surface for frequencies below the critical frequency is of particular interest. This implies introducing a non- standard modal expansion to compute the PTF accurately enough to guarantee the convergence of the PTF method and reduce computation time in comparison to a direct Finite Element resolution. An application on a submarine structure illustrates the interest of this approach.

References

References
1.
Caresta
,
M.
, and
Kessissoglou
,
N. J.
, 2011, “
Reduction of the Sound Pressure Radiated by a Submarine by Isolation of the End Caps
,”
ASME J. Vibr. Acoust.
,
133
, p.
031008
.
2.
Roy
,
N.
, and
Girard
,
A.
, 2005, “
Impact of Residual Modes in Structural Dynamics
,”
Proceedings of the SSMMT, Noordwijk, The Netherlands.
3.
Roy
,
N.
, and
Lapi
,
M.
, 2008, “
Efficient Computation of the Radiated Sound Power of Vibrating Structures using Modal Approach
,”
Proceedings of Acoustics’08, Paris, France.
4.
Balmès
,
E.
, 2008,
Theoretical Course Notes: Methods for Vibration Design and Validation
,
Ecole Centrale
,
Paris, France
.
5.
Tournour
,
M.
,
Atalla
,
N.
,
Chiello
,
O.
, and
Sgard
,
F.
, 2001, “
Validation, Performance, Convergence and Application of Free Interface Component Mode Synthesis
,”
Comput. Struct.
,
79
, pp.
1861
1876
.
6.
Tournour
,
M.
, and
Atalla
,
N.
, 2000, “
Pseudostatic Corrections for the Forced Vibroacoustic Response of a Structure-Cavity System
,”
J. Acoust. Soc. Am.
,
107
(
5
), pp.
2379
2386
.
7.
Kanarachos
,
A.
, and
Antoniadis
,
I.
, 1988, “
Symmetric Variational Principles and Modal Methods in Fluid-Structure Interaction Problems
,”
J. Sound Vib.
,
121
(
1
), pp.
77
104
.
8.
Ohayon
,
R.
, 2004, “
Reduced Models for Fluid-Structure Interaction Problems
,”
Int. J. Numer. Methods Eng.
,
60
, pp.
139
152
.
9.
Ohayon
,
R.
, 2001, “
Reduced Symmetric Models for Modal Analysis of Internal Structural-Acoustic and Hydroelastic-Sloshing Systems
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
3009
3019
.
10.
Morand
,
H. J.-P.
, and
Ohayon
,
R.
, 1995,
Fluid–Structure Interaction
,
Wiley
,
New York
.
11.
Olson
,
L. G.
, and
Bathe
,
K. J.
, 1985, “
Analysis of Fluid–Structure Interactions– A Direct Symmetric Coupled Formulation based on a Fluid Velocity Potential
,”
Comput. Struct.
,
21
, pp.
21
32
.
12.
Everstine
,
G. C.
, 1981, “
A Symmetric Potential Formulation for Fluid-Structure Interactions
,”
J. Sound Vib.
,
79
(
1
), pp.
157
160
.
13.
Tran
,
Q. H.
,
Ouisse
,
M.
, and
Bouhaddi
,
N.
, 2010, “
A Robust Component Mode Synthesis Method for Stochastic Damped Vibroacoustics
,”
Mech. Syst. Signal Process.
,
24
, pp.
164
181
.
14.
Wang
,
X.
, and
Bathe
,
K. J.
, 1997, “
Displacement/Pressure Based Mixed Finite Element Formulations for Acoustic Fluid Structure Interaction Problems
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
2001
2017
.
15.
Bathe
,
K. J.
,
Nitikipaiboon
,
C.
, and
Wang
,
X.
, 1995, “
A Mixed Displacement-Based Finite Element Formulation for Acoustic Fluid–Structure Interaction
Comput. Struct.
,
6
(
2/3
), pp.
225
237
.
16.
Sigrist
,
J. F.
, and
Garreau
,
S.
, 2007, “
Dynamic Analysis of Fluid-Structure Interaction Problems with Modal Methods Using Pressure-Based Fluid Finite Elements
,”
Finite Elem. Anal. Des.
,
43
, pp.
287
300
.
17.
Sigrist
,
J. F.
, 2006, “
Symmetric and Non-Symmetric Formulations for Fluid-Structure Interaction Problems: Reference Test Cases for Numerical Developments in Commercial Finite Element Code
,”
Proceedings of the Pressure Vessel and Piping Conference 2006, Vancouver, British Columbia, Canada.
18.
Ouisse
,
M.
,
Maxit
,
L.
,
Cacciolati
,
C.
, and
Guyader
,
J.-L.
, 2005, “
Patch Transfer Functions as a Tool to Couple Linear Acoustic Problems
ASME J. Vib. Acoust.
,
127
, pp.
458
466
.
19.
Chazot
,
J. D.
, and
Guyader
,
J.-L.
, 2007, “
Prediction of Transmission Loss of Double Panels with a Patch-Mobility Method
,”
J. Acoust. Soc. Am.
,
121
(
1
), pp.
267
278
.
20.
Aucejo
,
M.
,
Maxit
,
L.
,
Totaro
,
N.
, and
Guyader
,
J.-L.
, 2010, “
Convergence Acceleration using the Residual Shape Technique when Solving Structure–Acoustic Coupling with the Patch Transfer Functions Method
,”
Comput. Struct.
,
88
, pp.
728
736
.
21.
Tiliouine
,
B.
, and
Seghir
,
A.
, 1998, “
A Numerical Model for Time Domain Analysis of Dams Including Fluid-Structure Interaction
,”
Proceedings of the Fourth International Conference on Computer Structures Technology, Edinburg, UK.
22.
Komzsik
,
L.
, 2001, “
Numerical Methods: User’s Guide, MSC NASTRAN 2001
,”
MSC Software, Santa Ana.
23.
Gmür
,
T.
, 1997,
Dynamique des Structures. Analyse Modale Numérique
,
Presses Polytechniques et Universitaires Romandes
,
Lausanne
.
24.
Reymond
,
M.
, 2006, “
DMAP Programmer’s Guide, MD NASTRAN 2006
,”
MSC Software, Santa Ana.
25.
Aucejo
,
M.
, 2010, “
Vibro-Acoustique des Structures Immergées sous Ecoulement Turbulent,”
Ph. D. thesis, INSA Lyon, France.
You do not currently have access to this content.