This paper proposes to use a polynomial chaos expansion approach to compute stochastic complex eigenvalues and eigenvectors of structures including damping or gyroscopic effects. Its application to a finite element rotor model is compared to Monte Carlo simulations. This lets us validate the method and emphasize its advantages. Three different uncertain configurations are studied. For each, a stochastic Campbell diagram is proposed and interpreted and critical speeds dispersion is evaluated. Furthermore, an adaptation of the Modal Accordance Criterion (MAC) is proposed in order to monitor the eigenvectors dispersion.

References

References
1.
Ibrahim
,
R.
, 1987, “
Structural Dynamics with Parameter Uncertainties
,”
ASME Appl. Mech. Rev.
,
40
, pp.
309
328
.
2.
Manohar
,
C. S.
, and
Ibrahim
,
R. A.
, 1999, “
Progress in Structural Dynamics with Stochastic Parameter Variations: 1987-1998
,”
ASME Appl. Mech. Rev.
,
52
(
5
), pp.
177
197
.
3.
Schuëller
,
G. I.
, 1997, “
A State-of-the-Art Report on Computational Stochastic Mechanics
,”
Probab. Eng. Mech.
,
12
(
4
), pp.
197
321
.
4.
Schuëller
,
G. I.
, 2001, “
Computational Stochastic Mechanics - Recent Advances
,”
Comput. Struct.
,
79
(
22–25
), pp.
2225
2234
.
5.
Schuëller
,
G.
, and
Pradlwarter
,
H.
, 2009, “
Uncertain Linear Systems in Dynamics: Retrospective and Recent Developments by Stochastic Approaches
,”
Eng. Struct.
,
31
(
11
), pp.
2507
2517
.
6.
Ghanem
,
R.
, and
Spanos
,
P.
, 2003,
Stochastic Finite Elements: A Spectral Approach - Revised Edition
,
Dover Publications
,
New York
.
7.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
8.
Lucor
,
D.
, and
Karniadakis
,
G. E.
, 2004, “
Adaptive Generalized Polynomial Chaos for Nonlinear Random Oscillators
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
720
735
.
9.
Soize
,
C.
, 2000, “
A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics
,”
Probab. Eng. Mech.
,
15
(
3
), pp.
277
294
.
10.
Scheidt
,
J.
, and
Purkert
,
W.
, 1983,
Random Eigenvalue Problems
,
North Holland
,
Amsterdam
.
11.
Ghosh
,
D.
,
Ghanem
,
R.
, and
Red-Horse
,
J.
, 2005, “
Analysis of Eigenvalues and Modal Interaction of Stochastic Systems
,”
AIAA J.
,
43
(
10
), pp.
2196
2201
.
12.
Sankar
,
T. S.
,
Ramu
,
S. A.
, and
Ganesan
,
R.
, 1993, “
Stochastic Finite Element Analysis for High Speed Rotors
,”
ASME J. Vib. Acoust.
,
115
(
1
), pp.
59
64
.
13.
Murthy
,
R.
,
Mignolet
,
M. P.
, and
El-Shafei
,
A.
, 2010, “
Nonparametric Stochastic Modeling of Uncertainty in Rotordynamics - Part I: Formulation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
),
092501
.
14.
Murthy
,
R.
,
Mignolet
,
M. P.
, and
El-Shafei
,
A.
, 2010, “
Nonparametric Stochastic Modeling of Uncertainty in Rotordynamics—Part Ii: Applications
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
),
092502
.
15.
Adhikari
,
S.
, 2004, “
Complex Modes in Stochastic Systems
,”
Adv. Vib.Eng.
,
3
(
1
), pp.
1
11
. Available at: http://engweb.swan.ac.uk/~adhikaris/fulltext/journal/ft25.pdf.
16.
Dessombz
,
O.
, 2000, “
Analyse Dynamique de Structures Comportant des Paramètres Incertains (Dynamic Analysis of Structures with Uncertain Parameters)
,” Ph. D. thesis, Ecole Centrale de Lyon/MEGA, France.
17.
Ghanem
,
R.
, and
Ghosh
,
D.
, 2007, “
Efficient Characterization of the Random Eigenvalue Problem in a Polynomial Chaos Decomposition
,”
Int. J. Numer. Methods Eng.
,
72
, pp.
486
504
.
18.
Lalanne
,
M.
, and
Ferraris
,
G.
, 1998,
Rotordynamics Prediction in Engineering
,
2nd ed.
,
Wiley
,
New York.
19.
Sakamoto
,
S.
, and
Ghanem
,
R.
, 2002, “
Polynomial Chaos Decomposition for the Simulation of Non-Gaussian Nonstationary Stochastic Processes
,”
J. Eng. Mech.
,
128
(
2
), pp.
190
201
.
20.
Friswell
,
M. I.
, and
Mottershead
,
J. E.
, 1995,
Finite Element Model Updating in Structural Dynamics
,
Kluwer Academic
,
Dordrecht
.
21.
Sinou
,
J.-J.
, and
Lees
,
A.
, 2007, “
A Non-Linear Study of a Cracked Rotor
,”
Eur. J. Mech. A/Solids
,
26
(
1
), pp.
152
170
.
22.
Allemang
,
R.
, 2003, “
The Modal Assurance Criterion-Twenty Years of Use and Abuse
,”
Sound Vib.
,
37
(
8
), pp.
14
23
. Available at: http://www.sandv.com/downloads/0308alle.pdf.
23.
Sudret
,
B.
, and
Der Kiureghian
,
A.
, 2000, “
Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report
Technical Report, University of California, Berkeley.
You do not currently have access to this content.