Structural health monitoring (SHM) techniques have previously been proposed based on structural intensity (SI) due to its sensitivity to changes in boundary and loading conditions, and impedance, as well as to various damage mechanisms. In this paper, computational techniques for SI-based SHM are presented. Finite element solvers combined with SI equations can yield intensity maps over structures to determine characteristic changes in power flow due to damage. Numerical techniques for structural surface intensity (SSI) are also introduced using two alternative methods: A time domain approach that directly uses SSI equations that are valid at the surface of any elastic solid, and a frequency domain technique, which computes SI for very thin plate elements located at the surface of the structure. Advanced contact features such as nonlinearity can also be included in the model to increase the damage detection sensitivity. A plate model is used to illustrate these capabilities using SSI maps at nonlinear harmonics (NSSI). The results show both improved damage sensitivity and more global detection capabilities in a NSSI-based SHM system. A complex structure is also included to show global and local changes in SSI due simulated damage scenario. The techniques developed can be applied to general SI/SSI assessments and the design of SI-based SHM systems.

References

References
1.
Noiseux
,
D. U.
, 1970, “
Measurement of Power Flow in Uniform Beams and Plates
,”
J. Acoust. Soc. Am.
,
47
(
1
), pp.
238
247
.
2.
Verheij
,
J.
, 1980, “
Cross-Spectral Density Methods for Measuring Structure-Borne Power Flow on Beams and Pipes
,”
J. Sound Vib.
,
70
(
1
), pp.
133
139
.
3.
Ming
,
R. S.
, and
Craik
,
R. J.
, 1997, “
Errors in Measurement of Structure-Borne Power Flow Using Two-Accelerometer Techniques
,”
J. Sound Vib.
,
204
(
1
), pp.
59
71
.
4.
Szwerc
,
R. P.
,
Borroughs
,
C. B.
,
Hambric
,
S. A.
, and
McDevitt
,
T. E.
, 2000, “
Power Flow in Coupled Bending and Longitudinal Waves in Beams
,”
J. Acoust. Soc. Am.
,
107
(
6
), pp.
3186
3195
.
5.
McDevitt
,
T. E.
,
Koopmann
,
G. H.
, and
Burroughs
,
C. B.
, 1990, “
Two-Channel Laser Vibrometer Techniques for Vibrational Intensity Measurements: 1. Flexural Intensity
,”
ASME J. Vib. Acoust.
,
115
(
4
), pp.
436
440
.
6.
McDevitt
,
T. E.
,
Koopmann
,
G. H.
, and
Burroughs
,
C. B.
, 1990, “
Two-Channel Laser Vibrometer Techniques for Vibrational Intensity Measurements: 2. Longitudinal Intensity
,”
ASME J. Vib. Acoust.
,
116
(
1
), pp.
100
104
.
7.
Arruda
,
J. R. F.
, and
Mas.
P.
, 1996, “
Predicting and Measuring Flexural Power Flow in Plates
,”
Proc. SPIE
,
2868
, pp.
149
163
.
8.
Daley
,
M. J.
, and
Hambric
,
S. A.
, 2009, “
A Method to Simulate Structural Intensity Fields in Plates and General Structures Induced by Spatially and Temporally Random Excitation Fields
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
011006
.
9.
Pavic
,
G.
, 1987, “
Structural Surface Intensity: An Alternative Approach in Vibration Analysis and Diagnosis
,”
J. Sound Vib.
,
115
(
3
), pp.
405
422
.
10.
Cuschieri
,
J.
, 1987, “
Power Flow as a Complement to Statistical Energy Analysis and Finite Element Analysis
,”
Statistical Energy Analysis
,
K. H.
Hsu
,
D. J.
Nefske
, and
A.
Adnan
, eds.,
ASME
,
New York
, NCA Vol.
3
.
11.
Nefske
,
D. J.
, and
Sung
,
S. H.
, 1987, “
Power Flow Finite Element Analysis of Dynamic Systems: Basic Theory and Application to Beams
,”
Statistical Energy Analysis
,
K. H.
Hsu
,
D. J.
Nefske
, and
A.
Adnan
, eds.,
ASME
,
New York
, NCA Vol.
3
.
12.
Hambric
,
S. A.
, 2009 “
Power Flow and Mechanical Intensity Calculations in Structural Finite Element Analysis
,”
ASME J. Vib. Acoust.
,
112
, pp.
542
549
.
13.
Hambric
,
S. A.
, and
Szwerc
R. P.
, 1999, “
Predictions of Structural Intensity Fields Using Solid Finite Elements
,”
Noise Cont. Eng. J.
,
47
(
6
), pp.
209
217
.
14.
Gavric
.
L.
, and
Pavic
,
G.
, 1993, “
A Finite Element Method for Computation of Structural Intensity by the Normal Mode Approach
,”
J. Sound Vib.
,
164
(
1
), pp.
29
43
.
15.
Schmidt
,
W. T.
,
Smith
,
E. C.
, and
Conlon
,
S. C.
, 2009, “
Structural Intensity Based Damage Detection Assessments of Aluminum Panel Structures
,”
Proceedings of the 38th International Congress and Exposition on Noise Control Engineering
.
16.
Semperlotti
,
F.
, and
Conlon
,
S. C.
, 2010, “
Structural Damage Identification in Plates via Nonlinear Structural Intensity Maps
,”
J. Acoust. Soc. Am.
,
127
(
2
), pp.
EL48
EL53
.
17.
Masson
,
P.
, and
Halkyard
,
C. R.
, 2010, “
The Use of Time Domain Localized Structural Intensity for Damage Characterization
,”
Smart Mat. Struct.
,
19
, pp.
1
14
.
18.
Banks
,
J. C.
,
Hambric
,
S. A.
, and
Byington
,
C. S.
, 2000, “
Characterizing Mechanical System Integrity Using Structural Surface Intensity
,”
Proceedings of NOVEM - Noise and Vibration Emerging Methods,
Lyon, France
.
19.
Semperlotti
,
F.
, and
Conlon
,
S. C.
, 2010, “
Nonlinear Structural Surface Intensity: An Application of Contact Acoustic Nonlinearity to Power Flow Based Damage Detection
,”
Appl. Phys. Lett.
,
97
, p.
141911
.
20.
Wong
,
W. O.
,
Wang
,
X. Q.
, and
Cheng
,
L.
, 2009, “
Modal Power Flow Analysis of Damaged Plate
,”
J. Sound Vib.
,
320
, pp.
84
100
.
21.
Santos
,
E. R. O.
,
Pereira
,
V. S.
,
Arruda
,
J. R. F.
, and
Dos Santos
,
J. M. C.
, 2008, “
Structural Damage Detection Using Energy Flow Models
,”
Shock Vib.
,
15
, pp.
217
230
.
22.
Koegl
,
M.
,
Hurlebaus
,
S.
, and
Gaul
,
L.
, 2004, “
Finite Element Simulation of Non-Destructive Damage Detection With High Harmonics
,”
NDT&E Int.
,
37
, pp.
195
205
.
23.
Solodov
,
I.
,
Krohn
,
N.
, and
Busse
,
G.
, 2002, “
CAN: An Example of Nonclassical Acoustic Nonlinearity in Solids
,”
Ultrasonics
,
40
, pp.
621
625
.
24.
Semperlotti
,
F.
,
Wang
,
K. W.
, and
Smith
,
E. C.
, 2009, “
Identification of the Location of a Breathing Crack Using Super-Harmonic Response Signals Due to System Nonlinearity
,”
AIAA J.
,
47
, pp.
2073
2086
.
25.
Lee
,
H. P.
,
Lim
,
S. P.
, and
Khun
,
M. S.
, 2006, “
Diversion of Energy Flow Near Cracks Tips of a Vibrating Plate using the Structural Intensity Techniques
,”
J. Sound Vib.
,
296
, pp.
602
622
.
26.
Bendat
,
J. S.
, and
Piersol
,
A. G.
, 2000,
Random Data Analysis and Measurement Procedures
,
3rd ed.
,
Wiley Inter-Science
,
New York
.
27.
Exner
,
C.
,
Groeschl
,
M.
,
Radel
,
S.
,
Focke
,
C.
,
Benes
,
E.
, and
Pavic
,
G.
, 1998, “
In-Plane Laser-Doppler-Velocimeter Sensor Head for the Measurement of Surface Structural Intensity
,”
Acustica
,
84
, pp.
1055
1065
.
28.
Petzing
,
J. N.
, and
Tyrer
,
J. R.
, 1999, “
In-Plane Pulsed Carrier Speckle Interferometry for Structural Surface Intensity Measurement
,”
J. Mod. Opt.
,
46
(
14
), pp.
1947
1959
.
29.
Solodov
,
I.
,
Wackerl
,
J.
,
Pfleiderer
,
K.
, and
Busse
,
G.
, 2004, “
Nonlinear Self-Modulation and Subharmonic Acoustic Spectroscopy for Damage Detection and Location
,”
Appl. Phys. Lett.
,
84
, pp.
5386
5388
.
30.
Semperlotti
,
F.
,
Wang
,
K. W.
, and
Smith
,
E. C.
, 2009, “
Identification of the Localization of a Breathing Crack Using Nonlinear Subharmonic Response Signals
,”
Appl. Phys. Lett.
,
95
(
25
), p.
254101
.
31.
Dutta
,
D.
,
Hohn
,
S.
,
Harries
,
K. A.
, and
Rizzo
,
P.
, 2009, “
A Nonlinear Acoustic Technique for Crack Detection in Metallic Structures
,”
Struct. Health Mon.
,
8
, pp.
251
262
.
32.
Ulrich
,
T. J.
,
Johnson
,
P. A.
, and
Guyer
,
R. A.
, 2007, “
Interaction Dynamics of Elastic Waves With a Complex Nonlinear Scatterer Through the Use of a Time Reversal Mirror
,”
Phys. Rev. Lett.
,
98
, p.
104301
.
33.
Ulrich
,
T. J.
,
Johnson
,
P. A.
, and
Guyer
,
R. A.
, 2006, “
Imaging Nonlinear Scatterers Applying the Time Reversal Mirror
,”
J. Acoust. Soc. Am.
,
119
(
3
), pp.
1514
1518
.
34.
Semperlotti
,
F.
,
Conlon
,
S. C.
, and
Barnard
,
A. R.
, 2011, “
Airframe Structural Damage Detection: A Nonlinear Structural Surface Intensity-Based Technique
,”
J. Acoust. Soc. Am.
,
129
(
4
), pp.
EL121
127
.
You do not currently have access to this content.