Sound radiation from shear deformable stiffened laminated plates with multiple compliant layers is theoretically studied. Equations of motion for the composite laminated plates are on the basis of the first-order shear deformation plate theory, and the transfer matrix method is used to describe sound transmission through compliant layers. The first and second sets of stiffeners interact with the plate through normal line forces. By using the Fourier transform and stationary phase method, the far-field sound pressure is obtained in terms of analytical expressions. Comparisons are made between the first-order shear deformation plate theory and the classical thin plate theory. Three principal conclusions are drawn in the study. (1) The transverse point force acting on the stiffeners yields lower far-field sound pressure in the middle and high frequency range. Specifically, the transverse point force exerting on the large stiffeners produces the lowest far-field sound pressure among three different reactive points at the plate, small stiffener and large stiffener. (2) The far-field sound pressure spectra are confined by an acoustic circle and remain unchanged. Lots of flexural waves in the structure cannot radiate sound into the far field. (3) The sound attenuation of stiffened plates with compliant layers is mainly caused by the sound isolation of compliant layers rather than vibrational reduction. Compliant layers can effectively reduce the radiated sound pressure in the medium and high frequency range.

References

References
1.
Junger
,
M. C.
and
Feit
,
D.
, 1986,
Sound, Structures, and Their Interactions
,
MIT
,
Cambridge
.
2.
Mace
,
B. R.
, 1980, “
Sound Radiation from a Plate Reinforced by Two Sets of Parallel Stiffeners
,”
J. Sound Vib.
,
71
(
3
), pp.
435
441
.
3.
Greenspon
,
J. E.
, 1975, “
Sound Radiation From an Orthotropic Plate Supported by a Double Set of Stiffeners
,” Engineering Research Associates, Paper No. 0–75–1.
4.
Yin
,
X. W.
,
Gu
,
X. J.
,
Cui
,
H. F.
, and
Shen
,
R. Y.
, 2007, “
Acoustic Radiation from a Laminated Composite Plate Reinforced by Doubly Periodic Parallel Stiffeners
,”
J. Sound Vib.
,
306
(
3–5
), pp.
877
889
.
5.
Maxit
,
L.
, 2009, “
Wavenumber Space and Physical Space Responses of a Periodically Ribbed Plate to a Point Drive: A Discrete Approach
,”
Appl. Acoust.
,
70
(
4
), pp.
563
578
.
6.
Burroughs
,
C. B.
, 1984, “
Acoustic Radiation from Fluid-loaded Infinite Circular Cylinders with Doubly Periodic Ring Supports
,”
J. Acoust. Soc. Am.
,
75
(
3
), pp.
715
722
.
7.
Yin
,
X. W.
,
Liu
,
L. J.
,
Hua
,
H. X.
, and
Shen
,
R. Y.
, 2009, “
Acoustic Radiation From an Infinite Laminated Composite Cylindrical Shell With Doubly Periodic Rings
,”
ASME J. Vibr. Acoust.
,
131
(
1
), p.
011005
.
8.
Mace
,
B. R.
, 1981, “
Sound Radiation from Fluid Loaded Orthogonally Stiffened Plates
,”
J. Sound Vib.
,
79
(
3
), pp.
439
452
.
9.
Mead
,
D. J.
, 1990, “
Plates With Regular Stiffening in Acoustic Media: Vibration and Radiation
,”
J. Acoust. Soc. Am.
,
88
(
1
), pp.
391
401
.
10.
Xu
,
M. B.
,
Zhang
,
X. M.
, and
Zhang
,
W. H.
, 1999, “
Space-Harmonic Analysis of Input Power Flow in a Periodically Stiffened Shell Filled With Fluid
,”
J. Sound Vib.
,
222
(
4
), pp.
531
546
.
11.
Yan
,
J.
,
Li
,
T. Y.
,
Liu
,
J. X.
, and
Zhu
,
X.
, 2006, “
Space Harmonic Analysis of Sound Radiation from a Submerged Periodic Ring-stiffened Cylindrical Shell
,”
Appl. Acoust.
,
67
(
8
), pp.
743
755
.
12.
Efimtsov
,
B. M.
and
Lazarev
,
L. A.
, 2009, “
Forced Vibrations of Plates and Cylindrical Shells With Regular Orthogonal System of Stiffeners
,”
J. Sound Vib.
,
327
(
1–2
), pp.
41
54
.
13.
Gaunaurd
,
G. C.
and
Uberall
,
H.
, 1982, “
Resonance Theory of the Effective Properties of Perforated Solids
,”
J. Acoust. Soc. Am.
,
71
(
2
), pp.
282
295
.
14.
Ko
,
S. H.
, 1997, “
Reduction of Structure-borne Noise Using an Air-Voided Elastomer
,”
J. Acoust. Soc. Am.
,
101
(
6
), pp.
3306
3312
.
15.
Berry
,
A.
,
Foin
,
O.
, and
Szabo
,
J. P.
, 2001, “
Three-Dimensional Elasticity Model for a Decoupling Coating on a Rectangular Plate Immersed in a Heavy Fluid
,”
J. Acoust. Soc. Am.
,
109
(
6
), pp.
2704
2714
.
16.
Tao
,
M.
,
Tang
,
W. L.
, and
Fan
,
J.
, 2010, “
Mechanism Analysis of Noise Reduction by Compliant Decoupling Layers
,”
J. Ship Mech.
,
14
(
4
),
421
429
(in Chinese).
17.
Tao
,
M.
,
Tang
,
W. L.
, and
Hua
,
H. X.
, 2010, “
Noise Reduction Analysis of an Underwater Decoupling Layer
,”
ASME J. Vibr. Acoust.
,
132
(
6
), p.
061006
.
18.
Hull
,
A. J.
and
Welch
,
J. R.
, 2010, “
Elastic Response of an Acoustic Coating on a Rib-stiffened Plate
,”
J. Sound Vib.
,
329
(
20
), pp.
4192
4211
.
19.
Wang
,
T. A.
,
Li
,
S.
,
Rajaram
,
S.
, and
Nutt
,
S. R.
, 2010, “
Predicting the Sound Transmission Loss of Sandwich Panels by Statistical Energy Analysis Approach
,”
ASME J. Vibr. Acoust.
,
132
(
1
), p.
011004
.
20.
Sokolinsky
,
V. S.
and
Nutt
,
S. R.
, 2004, “
Consistent Higher-Order Dynamical Equations for Soft- Core Sandwich Beams
,”
AIAA J.
,
42
(
2
), pp.
374
382
.
21.
Laulagnet
,
B.
, and
Guyader
,
J. L.
, 1991, “
Sound Radiation From a Finite Cylindrical Shell Covered With a Compliant Layer
,”
ASME J. Vibr. Acoust.
,
113
(
2
), pp.
267
272
.
22.
Laulagnet
,
B.
, and
Guyader
,
J. L.
, 1995, “
Sound Radiation From Finite Cylindrical Shells, Partially Covered With Longitudinal Strips of Compliant Layer
,”
J. Sound Vib.
,
186
(
5
), pp.
723
742
.
23.
Cuschieri
,
J. M.
and
Feit
,
D.
, 2000, “
Influence of Circumferential Partial Coating on the Acoustic Radiation From a Fluid-Loaded Shell
,”
J. Acoust. Soc. Am.
,
107
(
6
), pp.
3196
3207
.
24.
Ko
,
S. H.
,
Seong
,
W.
, and
Pyo
,
S.
, 2001, “
Structure-Borne Noise Reduction for an Infinite, Elastic Cylindrical Shell
,”
J. Acoust. Soc. Am.
,
109
(
4
), pp.
1483
1495
.
25.
Yin
,
X. W.
,
Cui
,
H. F.
, and
Shen
,
S. G.
, 2009, “
Acoustic Radiation From Two Concentric Cylindrical Shells With Periodic Supports and a Viscoelastic Perforated Outer Coating
,”
Acta Acust. Acust.
,
95
(
5
), pp.
823
832
.
26.
Wang
,
C.
, and
Lai
,
J. C. S.
, 2000, “
The Sound Radiation Efficiency of Finite Length Acoustical Thick Circular Cylindrical Shells Under Mechanical Excitation I: The Theoretical Analysis
,”
J. Sound Vib.
,
232
(
2
), pp.
431
447
.
27.
Reddy
,
J. N.
, 1997,
Mechanics of Laminated Composite Plates : Theory and Analysis
,
CRC
,
Boca Raton
.
28.
Xing
,
Y. F.
and
Liu
,
B.
, 2009, “
Closed Form Solutions for Free Vibrations of Rectangular Mindlin Plates
,”
Acta Mech. Sin.
,
25
, pp.
689
698
.
You do not currently have access to this content.