A weakly nonlinear vibration absorber is used to suppress the primary resonance vibrations of a single degree-of-freedom weakly nonlinear oscillator with periodic excitation, where the two linearized natural frequencies of the integrated system are not under any internal resonance conditions. The values of the absorber parameters are significantly lower than those of the forced nonlinear oscillator, as such the nonlinear absorber can be regarded as a perturbation to the nonlinear primary oscillator. The characteristics of the nonlinear primary oscillator change only slightly in terms of its new linearized natural frequency and the frequency interval of primary resonances after the nonlinear absorber is added. The method of multiple scales is employed to obtain the averaged equations that determine the amplitudes and phases of the first-order approximate solutions. Selection criteria are developed for the absorber linear stiffness (linearized natural frequency) and nonlinear stiffness in order to achieve better performance in vibration suppression. Illustrative examples are given to show the effectiveness of the nonlinear absorber in suppressing nonlinear vibrations of the forced oscillator under primary resonance conditions.

References

References
1.
Maccari
,
A.
, 2008, “
Vibration Amplitude Control for a van der Pol-Duffing Oscillator with Time Delay
,”
J. Sound Vib.
,
317
, pp.
20
29
.
2.
Leung
,
A. Y. T.
,
Ji
,
J. C.
, and
Chen
,
G. R.
, 2004. “
Resonance Control for a Forced Single-Degree-of-Freedom Nonlinear System
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
14
, pp.
1423
1429
.
3.
Bonsel
,
J. H.
,
Fey
,
R. H. B.
, and
Nijmeijer
,
H.
, 2004, “
Application of a Dynamic Vibration Absorber to a Piecewise Linear Beam System
,”
Nonlinear Dyn.
,
37
, pp.
227
243
.
4.
Oueini
,
S. S.
, and
Golnaraghi
,
M.F.
, 1996, “
Experimental Implementation of the Internal Resonance Control Strategy
,”
J. Sound Vibr.
,
191
, pp.
377
396
.
5.
Oueini
,
S. S.
,
Nayfeh
,
A. H.
, and
Golnaraghi
,
M. F.
, 1997, “
A Theoretical and Experimental Implementation of a Control Method Based on Saturation
,”
Nonlinear Dyn.
,
13
, pp.
189
202.
6.
Pai
,
P. F.
,
Rommel
,
B.
, and
Schulz
,
M.J.
, 2000, “
Non-linear Vibration Absorbers Using Higher Order Internal Resonances
,”
J. Sound Vib.
,
234
, pp.
799
817
.
7.
Jo
,
H.
, and
Yabuno
,
H.
, 2010, “
Stabilization of a 1/3-Order Subharmonic Resonance Using Nonlinear Dynamic Vibration Absorber
,”
Nonlinear Dyn.
,
59
, pp.
747
758
.
8.
Jo
,
H.
, and
Yabuno
,
H.
, 2009, “
Amplitude Reduction of Primary Resonance of Nonlinear Oscillator by a Dynamic Vibration Absorber using Nonlinear Coupling
,”
Nonlinear Dyn
,
55
, pp.
67
78
.
9.
Cuvalci
,
O.
, and
Ertas
,
A.
, 1997, “
Pendulum as Vibration Absorber for Flexible Structures: Experiments and Theory
,”
Trans. ASME J. Vibr. Acoust.
,
118
, pp.
590
595
.
10.
Golnaraghi
,
M. F.
, 1991, “
Vibration Suppression of Flexible Structures Using Internal Resonance
,”
Mech. Res. Commun.
,
18
, pp.
135
143
.
11.
Jiang
,
X.
,
Mcfarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A.F.
, 2003, “
Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results
,”
Nonlinear Dyn.
,
33
, pp.
87
102
.
12.
Viguie
,
R.
, and
Kerschen
,
G.
, 2009, “
Nonlinear Vibration Absorber Coupled to a Nonlinear Primary System: A Tuning Methodology
,”
J. Sound Vib.
,
326
, pp.
780
793
.
13.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee.
,
Y.S.
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
, (
Springer
,
New York
, 2008).
14.
Nissen
,
J. C.
,
Popp
,
K.
, and
Schmalhorst
,
B.
, 1985, “
Optimization of a Nonlinear Dynamic Vibration Absorber
,”
J. Sound Vib.
,
99
, pp.
149
154
.
15.
Jordanov
,
I. N.
, and
Cheshankov
,
B.I.
, 1988, “
Optimal Design of Linear and Nonlinear Dynamic Vibration Absorbers
,”
J. Sound Vib.
,
123
, pp.
157
170
.
16.
Bert
,
C. W.
,
Egle
,
D. M.
, and
Wilkins
,
D.J.
, 1990, “
Optimal Design of a Nonlinear Dynamic Absorber
,”
J. Sound Vib.
,
137
, pp.
347
352
.
17.
Hunt
,
J. B.
, and
Nissen
,
J. C.
, 1982, “
The Broadband Dynamic Vibration Absorber
,”
J. Sound Vib.
,
83
, pp.
573
578
.
18.
Kojima
,
M.
, and
Saito
,
H.
, 1983, “
Forced Vibrations of a Beam with a Non-linear Dynamic Vibration Absorber
,”
J. Sound Vib.
,
88
, pp.
559
568
.
19.
Rice
,
H. J.
, and
McCraith
,
J. R.
, 1986, “
On Practical Implementations of the Nonlinear Vibration Absorber
,”
J. Sound Vib.
,
110
, pp.
161
163
.
20.
Rice
,
H. J.
, and
McCraith
,
J.R.
, 1987, “
Practical Nonlinear Vibration Absorber Design
,”
J. Sound Vib.
,
116
, pp.
546
559
.
21.
Virgin
,
L. N.
, and
Davis
,
R.B.
, 2003. “
Vibration Isolation using Buckled Struts
,”
J. Sound Vib.
,
260
, pp.
965
973
.
22.
Plaut
,
R. H.
,
Favor
,
H. M.
,
Jeffers
,
A. E.
, and
Virgin
,
L. N.
, 2008, “
Vibration Isolation using Buckled or Pre-bent Columns—Part 1: Two-dimensional Motions of Horizontal Rigid Bar
,”
J. Sound and Vib.
,
310
, pp.
409
420
.
23.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T.P.
, 2007, “
Static Analysis of a Passive Vibration Isolator with Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
, pp.
678
689
.
24.
Ibrahim
,
R. A.
, 2008, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
, pp.
371
452
.
25.
Rice
,
H.J.
, 1986, “
Combinational Instability of the Non-Linear Vibration Absorber
,”
J. Sound Vib.
,
108
, pp.
526
532
.
26.
Shaw
,
J.
,
Shaw
,
S. W.
, and
Haddow
,
A.G.
, 1989, “
On the Response of the Nonlinear Vibration Absorber
,”
Int. J. Nonlinear Mech.
,
24
, pp.
281
293
.
27.
Natsiavas
,
S.
, 1992, “
Steady State Oscillations and Stability of Non-linear Dynamic Vibration Absorbers
,”
J. Sound Vib.
,
156
, pp.
227
245
.
28.
Natsiavas
,
S.
, 1993, “
Vibration Absorbers for a Class of Self-excited Mechanical Systems
,”
Transactions of the ASME, J. Appl. Mech.
,
60
, pp.
382
387
.
29.
Sharifbakhtiar
,
M.
and
Shaw
,
S.W.
, 1992, “
Effects of Nonlinearities and Damping on the Dynamic Response of a Centrifugal Pendulum Vibration Absorber
,”
Trans. ASME, J. Vib. Acoust.
,
114
, pp.
305
311
.
30.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
Nonlinear Oscillations
(
Wiley Interscience
,
New York
, 1979).
31.
Inman
,
D. J.
, 2001,
Engineering Vibration
,
2nd ed,
Prentice Hall, Englewood Cliffs
,
New Jersey
.
32.
Rao
,
S. S.
, 2001,
Mechanical Vibration
,
4th ed,
Person Prentice Hall
,
New Jersey
.
33.
Febbo
,
M.
, and
Vera
S.A.
, 2008, “
Optimization of a Two Degree of Freedom System Acting as a Dynamic Vibration Absorber
,”
Trans. ASME, J. Vib. Acoust.
,
130
, pp.
011013
-1–011013-
11
.
34.
Ji
,
J. C.
, and
Zhang
,
N.
, 2010, “
Suppression of the Primary Resonance Vibrations of a Forced Nonlinear System using a Dynamic Vibration Absorber
,”
J. Sound Vib.
,
329
, pp.
2044
2056
.
You do not currently have access to this content.