Firstly, a calculation for percentiles of von Mises stress in linear structures subjected to Gaussian random loads is extended to the case of Gaussian random loads having nonzero mean values, i.e.,the inclusion of static loads. The development is restricted to the case of plane stress. The method includes calculation of a given percentile of von Mises stress to any desired accuracy, a rapid estimate of the percentile, and upper and lower bounds on the von Mises stress. The calculation expands the cumulative distribution function of the von Mises stress as a series of noncentral chi-square distributions. Summation of a sufficient number of terms of the series calculates the percentile to the desired accuracy. The rapid estimate of the percentile interpolates the distribution of the von Mises stress in a small number of inverse noncentral chi-square2 distribution functions. The upper and lower bounds on the percentiles take advantage of the noncentral chi-square distribution of summations of normally distributed stress components. Second and third calculation methods arise from approximations of the distribution of quadratic forms of noncentral normal variables, or equivalently, linear combinations of noncentral chi-square variables. These methods provide rapid estimates of percentiles of von Mises stress in linear structures under random loads having nonzero mean values. The accuracy and computational efficiency of the methods are reviewed and compared. The methods are expected to have wide application in design of and prognostics for components subjected to constant structural loads coupled with random loading arising from vibrations caused by wind, waves, seismic events, engines, turbulence, acoustic noise, etc.

References

References
1.
de la Fuente
,
E.
, 2009, “
Von Mises Stresses in Random Vibration of Linear Structures
,”
Comput. Struct.
,
87
, pp.
1253
1262
.
2.
Liu
,
H.
,
Tang
,
Y.
, and
Zhang
,
H. H.
, 2009, “
A New Chi-Square Approximation to the Distribution of Non-Negative Definite Quadratic Forms in Non-Central Normal Variables
,”
Comput. Stat. Data Anal.
,
53
, pp.
853
856
.
3.
Pearson
,
E.
, 1959, “
Note on an Approximation to the Distribution of Non-Central c2
,”
Biometrika
,
46
, p.
364
.
4.
Ansys
Inc.
, 2009, User’s Manual for ANSYS, Software Package, Revision 11.0, Canonsburg, Pennsylvania.
5.
Wirsching
,
P. H.
,
Paez
,
T. L.
, and
Ortiz
,
K.
, 1995,
Random Vibrations, Theory and Practice
,
Dover Publications
,
Mineola, New York
.
6.
Meirovitch
,
L.
, 1975,
Elements of Vibration Analysis,
2nd ed.
,
McGraw-Hill
,
Boston
.
7.
Segalman
,
D. J.
,
Reese
,
G. M.
,
Field
,
R.V.
, Jr., and
Fulcher
,
C. W. G.
, 2000, “
Estimating the Probability Distribution of von Mises Stress for Structures Undergoing Random Excitation
,”
ASME.J. Vib . Acoust.
,
122
(
1
), pp.
42
48
.
8.
Quaranta
,
G.
, and
Mantegazza
,
P.
, 2001, “
Randomly Excited Structures Reliability by Means of the von Mises Stress Response
,”
Proceedings of the XVI Congresso Nazionale AIDAA
,
9.
Tibbits
,
P.
, 2011, “
Application of Algorithms for Percentiles of Von Mises Stress from Combined Random Vibration and Static Loadings
,”
J. Vib. Acoust.
,
133
(
4
), p.
044502
.
10.
Hasofer
,
A. M.
, and
Lind
,
L. C.
, 1974, “
An Exact and Invariant First-order Reliability Format
,”
ASCE. J. Eng. Mech.
,
100
, pp.
111
121
. Available at http://ascelibrary.org/emo/http://ascelibrary.org/emo/.
11.
Kiureghian
,
A. D.
,
Lin
,
H. Z.
, and
Hwang
,
S. J.
, 1987, “
Second Order Reliability Analysis Approximations
,”
ASCE.J. Eng. Mech.
,
113
(
8
), pp.
1208
1225
.
12.
Gupta
,
S.
, 2004, “
Reliability Analysis of Randomly Vibrating Structures with Parameter Uncertainties
,” Ph.D. thesis, Indian Institute of Science, Bangalore.
13.
Lee
,
Y.
, and
Hwang
,
D.
, 2008, “
A Study on the Techniques of Estimating the Probability of Failure
,”
J. Chungcheong Math. Soc.
,
21
(
4
), pp.
573
583
.
14.
Harbiz
,
A.
, 1986, “
An Efficient Sampling Method for Probability of Failure Calculation
,”
Struct. Saf.
,
3
(
2
), pp.
109
116
.
15.
Hogg
,
R. V.
, and
Craig
,
A. T.
, 1995,
Introduction to Mathematical Statistics
,
5th ed.
,
Prentice Hall
,
Upper Saddle River, New Jersey
, pp.
484
485
.
16.
Kotz
,
S.
,
Johnson
,
N. L.
, and
Boyd
,
D. W.
, 1966, “
Series Representation of Distributions of Quadratic Forms in Normal Variables, I. Central Case
,”
Ann. Math. Stat.
,
38
(
3
), pp.
823
837
.
17.
de la Fuente
,
E.
, 2010, “
Exact Reliability Calculation with Quadratic Failure Indices in Random Vibration
,”
Eng. Struct.
,
32
, pp.
793
799
.
18.
Kotz
,
S.
,
Johnson
,
N. L.
, and
Boyd
,
D. W.
, 1966, “
Series Representation of Distributions of Quadratic Forms in Normal Variables II. Noncentral Case
,”
Ann. Math. Stat.
,
38
(
3
), pp.
838
848
.
19.
Raphaeli
,
D.
, 1996, “
Distribution of Noncentral Indefinite Quadratic Forms in Complex Normal Variables
,”
IEEE Trans. Inf. Theory
,
42
(
3
), pp.
1002
1007
.
20.
Duchesne
,
P.
, and
de Micheaux
,
P.
, 2010, “
Computing the Distribution of Quadratic Forms: Further Comparisons between the Liu, Tang, Zhang Approximation and Exact Methods
,”
Comput. Stat. Data Anal.
,
54
, pp.
858
862
.
21.
Imhof
,
J.
, 1961, “
Computing the Distribution of Quadratic Forms in Normal Variables
,”
Biometrika
,
48
(
3/4
), pp.
419
426
.
22.
Metropolis
,
N.
, and
Ulam
,
S.
, 1949, “
The Monte Carlo Method
,”
J. Am. Stat. Assoc.
,
44
(
247
), pp.
335
341
.
23.
Gentle
,
J. E.
, 1998,
Random Number Generation and Monte Carlo Methods
,
2nd ed.
,
Springer-Verlag
,
New York
.
24.
Zollanvari
,
A.
,
Braga-Neto
,
U.
, and
Dogherty
,
E.
, 2009, “
On the Sampling Distribution of Resubstitution and Leave-One-Out Error Estimators for Linear Classifiers
,”
Pattern Recogn.
,
42
, pp.
2705
2723
.
You do not currently have access to this content.