The Bouc-Wen class models are widely used to portray different types of hysteretic behavior. This paper presents an effective genetic algorithms-based method for fitting a generalized Bouc-Wen model, proposed by Song and Der Kiureghian [2006, “Generalized Bouc-Wen Model for Highly Asymmetric Hysteresis,” ASCE J. Eng. Mech., 132(6), p. 610618], to highly asymmetric experimental hysteretic loops. The performance function is based on integral relationships derived from the generalized Bouc-Wen differential equation for each of the six different phases of asymmetric hysteretic loops. The conditions, which must be satisfied by the model parameters to obtain closed and smooth hysteretic loops, are specified. The method is applied to fit the generalized Bouc-Wen model to hysteretic loops, which are obtained in laboratory experiments for a new type of mounts used for base isolation of forging hammers. By using a single degree of freedom (SDOF) system with the predicted hysteretic characteristics, a remarkably close agreement between the measured and simulated vibrations of hammer was obtained.

References

References
1.
Bouc
,
R.
, 1967, “
Forced Vibration of Mechanical Systems With Hysteresis
,”
Proceedings of Fourth Conference on Nonlinear Oscillations
, Prague.
2.
Wen
,
Y. K.
, 1976, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech. Div.
,
102
, p.
249263
.
3.
Ljung
,
L.
, 1999,
System Identification. Theory for the User
,
2nd ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
4.
Ikhouane
,
F.
,
Rodellar
,
J.
, and
Hurtado
,
J. E.
, 2006, “
Analytical Characterization of Hysteresis Loops Described by the Bouc-Wen Model
,”
Mech. Adv. Mater. Struc.
,
13
(
6
), p.
463472
.
5.
Ikhouane
,
F.
,
Manosa
,
V.
, and
Rodellar
,
J.
, 2007, “
Dynamic Properties of the Hysteretic Bouc-Wen Model
,”
Syst. Control Lett.
,
56
(
3
), p.
197205
.
6.
Charalampakis
,
A. E.
, and
Koumousis
,
V. K.
, 2008, “
On the Response and Dissipated Energy of Bouc-Wen Hysteretic Model
,”
J. Sound Vib.
,
309
(
3–5
), p.
887895
.
7.
Ni
,
Y.
,
Q. Ko
,
J. M.
, and
Wong
,
C. W.
, 1998, “
Identification of Non-Linear Hysteretic Isolators From Periodic Vibration Tests
,”
J. Sound Vib.
,
217
(
4
), p.
737756
.
8.
Li
,
S. J.
,
Yu
,
H.
, and
Suzuki
,
Y.
, 2004, “
Identification of Non-Linear Hysteretic Systems With Slip
,”
Comput. Struct.
,
82
(
2–3
), p.
157165
.
9.
Song
,
J.
, and
Kiureghian
,
A. D.
, 2006, “
Generalized Bouc-Wen Model for Highly Asymmetric Hysteresis
,”
ASCE J. Eng. Mech.
,
132
(
6
), p.
610618
.
10.
Sireteanu
,
T.
,
Giuclea
,
M.
, and
Mitu
,
A. M.
, 2009, “
An Analytical Approach for Approximation of Experimental Hysteretic Loops by Bouc-Wen Model
,”
Proc. R. Acad. Series A
,
10
(
1
), p.
4354
.
11.
Hornig
,
K. H.
, and
Flowers
,
G. T.
, 2005, “
Parameter Characterization of the Bouc-Wen Mechanical Hysteresis Model for Sandwich Composite Materials Using Real Coded Genetic Algorithms
,”
Int. J. Acoust. Vib.
,
10
(
2
), p.
7381
.
12.
Ajavakom
,
N.
,
Ng
,
C. H.
, and
Ma
,
F.
, 2008, “
Performance of Nonlinear Degrading Structures: Identification, Validation, and Prediction
,”
Comput. Struct.
,
86
(
7–8
), p.
652662
.
13.
Giuclea
,
M.
,
Sireteanu
,
T.
,
Stancioiu
,
D.
, and
Stammers
,
C. W.
, 2004, “
Modelling of Magnetorheological Damper Dynamic Behaviour by Genetic Algorithms Based Inverse Method
,”
Proc. R. Acad. Series A
,
5
(
1
), p.
5563
.
14.
Giuclea
,
M.
,
Sireteanu
,
T.
,
Stancioiu
,
D.
, and
Stammers
,
C. W.
, 2004, “
Model Parameter Identification for Vehicle Vibration Control With Magnetorheological Dampers Using Computational Intelligence Methods
,”
P. I. Mech. Eng. I-J. Sys.
,
218
(
7
), p.
569581
.
15.
Kwok
,
N. M.
,
Ha
,
Q. P.
,
Nguyen
,
M. T.
,
Li
,
J.
, and
Samali
,
B.
, 2007, “
Bouc-Wen Model Parameter Identification for a MR Fluid Damper Using Computationally Efficient GA
,”
ISA T.
,
46
(
2
), p.
167179
.
16.
Charalampakis
,
A. E.
, and
Koumousis
,
V. K.
, 2008, “
Identification of Bouc-Wen Hysteretic Systems by a Hybrid Evolutionary Algorithm
,”
J. Sound Vib.
,
314
(
3–5
), p.
571585
.
17.
Sireteanu
,
T.
,
Giuclea
,
M.
, and
Mitu
,
A. M.
, 2009, “
On the Fitting of Bouc-Wen Model by Genetic Algorithms
,”
Rev. Roum. Sci. Techn. Méc. Appl.
,
54
(
1
), p.
310
.
18.
Sireteanu
,
T.
,
Giuclea
,
M.
, and
Mitu
,
A. M.
, 2010, “
Identification of an Extended Bouc-Wen Model With Application to Seismic Protection Through Hysteretic Devices
,”
Comput. Mech.
,
45
(
5
), p.
431441
.
19.
Wang
,
C.-H.
, and
Wen
,
Y. K.
, 1998, “
Reliability and Redundancy of Pre-Northridge Low-Rise Steel Building Under Seismic Excitation
,” Rep. No. UILU-ENG-99-2002, Univ. Illinois at Urbana-Champaign, Champaign, IL.
20.
Dobson
,
S.
,
Noori
,
M.
,
Hou
,
Z.
,
Dimentberg
,
M.
, and
Baber
,
T.
, 1997, “
Modeling and Random Vibration Analysis of SDOF Systems With Asymmetric Hysteresis
,”
Int. J. Nonlin. Mech.
,
32
(
4
), p.
669680
.
21.
Ma
,
F.
,
Zhang
,
H.
,
Bockstedte
,
A.
,
Foliente
,
G. C.
, and
Paevere
,
P.
, 2004, “
Parameter Analysis of the Differential Model of Hysteresis
,”
ASME J. Appl. Mech.
,
71
(
3
), p.
342349
.
22.
Michalewicz
,
Z.
, 1992,
Genetic Algorithms + Data Structures = Evolution Programs
,
Springer
,
Berlin
.
23.
Chehab
,
A. G.
, and
El Naggar
,
M. H.
, 2003, “
Design of Efficient Base Isolation for Hammers and Presses
,”
Soil Dyn. Earthq. Eng.
,
23
(
2
), p.
127141
.
24.
Ghita
,
G.
,
Serban
,
V.
, and
Mitu
,
A. M.
, 2006, “
An Efficient Shock Isolation System for Forging Hammer
,”
Advanced Engineering in Applied Mechanics
, Chap. 6,
Romanian Academy Press
,
Bucharest
.
You do not currently have access to this content.