In this paper, the effects of the axial load and the elastic matrix on the flexural wave in the carbon nanotube are studied. Based on the nonlocal continuum theory and the Timoshenko beam model, the equation of the flexural wave motion is derived. The dispersion relation between the frequency and the wave number is illustrated. The characteristics of the flexural wave propagation in the carbon nanotube embedded in the elastic matrix with the axial load are analyzed. The wave frequency and the phase velocity are presented with different wave numbers. Furthermore, the small scale effects on the wave properties are discussed.

References

References
1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
, pp.
56
58
.
2.
Cao
,
G. X.
,
Chen
,
X.
, and
Kysar
,
J. W.
, 2006, “
Thermal Vibration and Apparent Thermal Contraction of Single-Walled Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
54
, pp.
1206
1236
.
3.
Gibson
,
R. F.
,
Ayorinde
,
E. O.
, and
Wen
,
Y. F.
, 2007, “
Vibrations of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
,
67
, pp.
1
28
.
4.
Cheng
,
H. C.
,
Liu
,
Y. L.
,
Hsu
,
Y. C.
, and
Chen
,
W. H.
, 2009, “
Atomistic-Continuum Modeling for Mechanical Properties of Single-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
,
46
, pp.
1695
1704
.
5.
Shokrieh
,
M. M.
, and
Rafiee
,
R.
, 2010, “
Prediction of Young’s Modulus of Graphene Sheets and Carbon Nanotubes Using Nanoscale Continuum Mechanics Approach
,”
Mater. Des.
,
31
, pp.
790
795
.
6.
Ansari
,
R.
, and
Motevalli
,
B.
, 2011, “
On New Aspects of Nested Carbon Nanotubes as Gigahertz Oscillators
,”
J. Vibr. Acoust.
,
133
, p.
051003
.
7.
Natsuki
,
T.
,
Ni
,
Q. Q.
, and
Endo
,
M.
, 2008, “
Vibrational Analysis of Fluid-Filled Carbon Nanotubes Using the Wave Propagation Approach
,”
Appl. Phys. A
,
90
, pp.
441
445
.
8.
Wang
,
L. F.
,
Guo
,
W. L.
, and
Hu
,
H. Y.
, 2008, “
Group Velocity of Wave Propagation in Carbon Nanotubes
,”
Proc. R. Soc. London, Ser. A
,
464
, pp.
1423
1438
.
9.
Xu
,
K. Y.
,
Mantis
,
E. C.
, and
Yan
,
Y. H.
, 2008, “
Vibrations of Double-Walled Carbon Nanotubes With Different Boundary Conditions Between Inner and Outer Tubes
,”
J. Appl. Mech.
,
75
, p.
021013
.
10.
Scarpa
,
F.
, and
Adhikari
,
S.
, 2008, “
Uncertainty Modeling of Carbon Nanotube Terahertz Oscillators
,”
J. Non-Cryst. Solids
,
354
, pp.
4151
4156
.
11.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
, 2009, “
Wave Propagation in Multi-Walled Carbon Nanotube
,”
Comput. Mater. Sci.
,
45
, pp.
411
418
.
12.
Eringen
,
A. C.
, 1972, “
Nonlocal Polar Elastic Continua
,”
Int. J. Eng. Sci.
,
10
, pp.
1
16
.
13.
Eringen
,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
, pp.
4703
4710
.
14.
Peddieson
,
J.
,
Buchanan
,
G. R.
, and
McNitt
,
R. P.
, 2003, “
Application of Nonlocal Continuum Models to Nanotechnology
,”
Int. J. Eng. Sci.
,
41
, pp.
305
312
.
15.
Sudak
,
L. J.
, 2003, “
Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
,
94
, pp.
7281
7287
.
16.
Reddy
,
J. N.
, 2007, “
Nonlocal Theories for Bending, Buckling and Vibration of Beams
,”
Int. J. Eng. Sci.
,
45
, pp.
288
307
.
17.
Hao
,
M. J.
,
Guo
,
X. M.
, and
Wang
,
Q.
, 2010, “
Small-Scale Effect on Torsional Buckling of Multi-Walled Carbon Nanotubes
,”
Eur. J. Mech. A/Solids
,
29
, pp.
49
55
.
18.
Benzair
,
A.
,
Tounsi
,
A.
,
Besseghier
,
A.
,
Heireche
,
H.
,
Moulay
,
N.
, and
Boumia
,
L.
, 2008, “
The Thermal Effect on Vibration of Single-Walled Carbon Nanotubes Using Nonlocal Timoshenko Beam Theory
,”
J. Phys. D: Appl. Phys.
,
41
, p.
225404
.
19.
Li
,
X. F.
, and
Wang
,
B. L.
, 2009, “
Vibrational Modes of Timoshenko Beams at Small Scales
,”
Appl. Phys. Lett.
,
94
, p.
101903
.
20.
Yang
,
J.
,
Ke
,
L. L.
, and
Kitipornchai
,
S.
, 2010, “
Nonlinear Free Vibration of Single-Walled Carbon Nanotubes Using Nonlocal Timoshenko Beam Theory
,”
Physica E
,
42
, pp.
1727
1735
.
21.
Zhang
,
Y. Q.
,
Liu
,
G. R.
, and
Han
,
X.
, 2006, “
Effect of Small Length Scale on Elastic Buckling of Multi-Walled Carbon Nanotubes Under Radial Pressure
,”
Phys. Lett. A
,
349
, pp.
370
376
.
22.
Lu
,
P.
, 2007, “
Dynamic Analysis of Axially Prestressed Micro/Nanobeam Structures Based on Nonlocal Beam Theory
,”
J. Appl. Phys.
,
101
, p.
073504
.
23.
Sun
,
C.
, and
Liu
,
K.
, 2007, “
Vibration of Multi-Walled Carbon Nanotubes With Initial Axial Loading
,”
Solid State Commun.
,
143
, pp.
202
207
.
24.
Cai
,
H.
, and
Wang
,
X.
, 2006, “
Effects of Initial Stress on Transverse Wave Propagation in Carbon Nanotubes Based on Timoshenko Laminated Beam Models
,”
Nanotechnology
,
17
, pp.
45
53
.
25.
Selim
,
M. M.
,
Abe
,
S.
, and
Harigaya
,
K.
, 2009, “
Effects of Initial Compression Stress on Wave Propagation in Carbon Nanotubes
,”
Eur. Phys. J. B
,
69
, pp.
523
528
.
26.
Bower
,
C.
,
Rosen
,
R.
,
Jin
,
L.
,
Han
,
J.
, and
Zhou
,
O.
, 1999, “
Deformation of Carbon Nanotubes in Nanotube- Polymer Composites
,”
Appl. Phys. Lett.
,
74
, pp.
3317
3319
.
27.
Ru
,
C. Q.
, 2001, “
Axially Compressed Buckling of a Doublewalled Carbon Nanotube Embedded in an Elastic Medium
,”
J. Mech. Phys. Solids
,
49
, pp.
1265
1279
.
28.
Pradhan
,
S. C.
, and
Murmu
,
T.
, 2009, “
Small-Scale Effect on Vibration Analysis of Single-Walled Carbon Nanotubes Embedded in an Elastic Medium Using Nonlocal Elasticity Theory
,”
J. Appl. Phys.
,
105
, p.
124306
.
29.
Wang
,
Y. Z.
,
Li
,
F. M.
, and
Kishimoto
,
K.
, 2010, “
Wave Propagation Characteristics in Fluid-Conveying Double-Walled Nanotubes With Scale Effects
,”
Comput. Mater. Sci.
,
48
, pp.
413
418
.
30.
Achenbach
,
J. D.
, 1973,
Wave Propagation in Elastic Solids
,
North-Holland Publishing Company
,
Amsterdam
.
31.
Timoshenko
,
S.
, and
Young
,
D. H.
,
Weaver
,
W.
, Jr.
, 1974,
Vibration Problems in Engineering
,
4th ed.
,
John Wiley & Sons
,
New York
.
32.
Graff
,
K. F.
, 1975,
Wave Motion in Elastic Solids
,
Clarendon Press
,
Oxford
.
33.
Lanir
,
Y.
, and
Fung
,
Y. C. B.
, 1972, “
Fiber Composite Columns Under Compressions
,”
J. Compos. Mater.
,
6
, pp.
387
401
.
34.
Hahn
,
H. T.
, and
Williams
,
J. G.
, 1984, “
Compression Failure Mechanisms in Unidirectional Composites
,”
Compos. Mater.–Test. Des. Conf.
,
7
, pp.
115
139
.
35.
Wang
,
Q.
, 2005, “
Wave Propagation in Carbon Nanotubes via Nonlocal Continuum Mechanics
,”
J. Appl. Phys.
,
98
, p.
124301
.
36.
Wang
,
Q.
, and
Wang
,
C. M.
, 2007, “
The Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modelling Carbon Nanotubes
,”
Nanotechnology
,
18
, p.
075702
.
37.
Tounsi
,
A.
,
Heireche
,
H.
,
Berrabah
,
H. M.
,
Benzair
,
A.
, and
Boumia
,
L.
, 2008, “
Effect of Small Size on Wave Propagation in Double-Walled Carbon Nanotubes Under Temperature Field
,”
J. Appl. Phys.
,
104
, p.
104301
.
38.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2003, “
Vibration of an Embedded Multiwall Carbon Nanotube
,”
Compos. Sci. Tech.
,
63
, pp.
1533
1542
.
39.
Yoon
,
J.
,
Ru
,
C. Q.
, and
Mioduchowski
,
A.
, 2004, “
Timoshenko-Beam Effects on Transverse Wave Propagation in Carbon Nanotubes
,”
Composites, Part B
,
35
, pp.
87
93
.
40.
Wang
,
Q.
, and
Varadan
,
V. K.
, 2005, “
Stability Analysis of Carbon Nanotubes via Continuum Models
,”
Smart Mater. Struct.
,
14
, pp.
281
286
.
41.
Wang
,
Q.
, and
Varadan
,
V. K.
, 2006, “
Wave Characteristics of Carbon Nanotubes
,”
Int. J. Solids Struct.
,
43
, pp.
254
265
.
42.
Lu
,
P.
,
Lee
,
H. P.
,
Lu
,
C.
, and
Zhang
,
P. Q.
, 2007, “
Application of Nonlocal Beam Models for Carbon Nanotubes
,”
Int. J. Solids Struct.
,
44
, pp.
5289
5300
.
43.
Wang
,
L.
,
Ni
,
Q.
,
Li
,
M.
, and
Qian
,
Q.
, 2008, “
The Thermal Effect Vibration and Instability of Carbon Nanotubes Conveying Fluid
,”
Physica E
,
40
, pp.
3179
3182
.
44.
Wang
,
L.
, 2009, “
Dynamical Behaviors of Double-Walled Carbon Nanotubes Conveying Fluid Accounting for the Role of Small Length Scale
,”
Comput. Mater. Sci.
,
45
, pp.
584
588
.
45.
Wang
,
L. F.
, and
Hu
,
H. Y.
, 2005, “
Flexural Wave Propagation in Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
71
, p.
195412
.
46.
Hu
,
Y. G.
,
Liew
,
K. M.
,
Wang
,
Q.
,
He
,
X. Q.
, and
Yakobson
,
B. I.
, 2008, “
Nonlocal Shell Model for Elastic Wave Propagation in Single- and Double-Walled Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
56
, pp.
3475
3485
.
47.
Hu
,
Y. G.
,
Liew
,
K. M.
, and
Wang
,
Q.
, 2009, “
Nonlocal Elastic Beam Models for Flexural Wave Propagation in Double-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
106
, p.
004301
.
48.
Khademolhosseini
,
F.
,
Phani
,
A. S.
,
Nojeh
,
A.
, and
Rajapakse
,
R. K. N. D.
, 2011, “
Nonlocal Continuum Modeling and Molecular Dynamics Simulation of Torsional Vibration of Carbon Nanotubes
,”
IEEE Trans. Nanotechnol.
,
11
, pp.
34
43
.
49.
Ru
,
C. Q.
, 2000, “
Column Buckling of Multiwalled Carbon Nanotubes With Interlayer Radial Displacements
,”
Phys. Rev. B
,
62
, pp.
16962
16967
.
You do not currently have access to this content.