A method has been developed to predict the damping behavior of an equivalent plate formed from sandwich panels with a thermoviscous fluid core, which is based on an asymptotic approach. The technique works on the break-up of the basic physical quantities such as pressure, temperature, and particle velocities as constants and linear functions of the z coordinate, which signifies the perpendicular direction from the plate mid-surface. The asymptotic modeling is performed in a very thin and highly thermoviscous fluid layer on the full set of linearized Navier Stokes equations. The use of highly viscous fluid layers such as Rhodorsil® 47 oils, yields high damping loss factors, which are of the order of 10−1. The effects of the panel thickness and the fluid core thickness are also studied. It is shown that the damping loss factor of the equivalent plate is independent of the frequency. Experimental validation provides a good agreement with the theoretical results.

References

References
1.
Hussain
,
H. I.
, and
Guyader
,
J. L.
, 2009, “
Sound Radiation of Plates in Thermoviscous Media
,”
Acta Acust, Acust.
,
95
(
6
), pp.
997
1005
.
2.
Hussain
,
H. I.
, and
Guyader
,
J. L.
, 2009, “
Finite Double Wall Acoustic Transmission With Thermoviscous Effects
,”
Proceedings of ICSV16
,
Krakow, Poland
.
3.
Akrout
,
A.
,
Hammami
,
L.
,
Tahar
,
M. B.
, and
Haddar
,
M.
, 2009, “
Vibroacoustic Behaviour of Laminated Double Glazing Enclosing a Viscothermal Fluid Cavity
,”
Appl. Acoust.
,
70
, pp.
82
96
.
4.
Akrout
,
A.
,
Karra
,
C.
,
Hammami
,
L.
, and
Haddar
,
M.
, 2008, “
Viscothermal Fluid Effects on Vibro-Acoustic Behaviour of Double Elastic Panels
,”
Int. J. Mech. Sci.
,
50
(
4
), pp.
764
773
.
5.
Poignand
,
G.
,
Lihoreau
,
B.
,
Lotton
,
P.
,
Gaviot
,
E.
,
Bruneau
,
M.
, and
Gusev
,
V.
, 2007, “
Optimal Acoustic Fields in Compact Thermoacoustic Refrigerators
,”
Appl. Acoust.
,
68
, pp.
642
659
.
6.
Basten
,
T. G. H.
,
Van Der Hoogt
,
P. J. M.
,
Spiering
,
R. M. E. J.
, and
Tijdeman
,
H.
, 2001, “
On the Acousto-Elastic Behaviour of Doublewall Panels With a Viscothermal Air Layer
,”
J. Sound Vib.
,
234
(
4
), pp.
699
719
.
7.
Beltman
,
W. M.
,
Van Der Hoogt
,
P. J. M.
,
Spiering
,
R. M. E. J.
, and
Tijdeman
,
H.
, 1997, “
Air Loads on a Rigid Plate Oscillating Normal to a Fixed Surface
,”
J. Sound Vib.
,
206
(
2
), pp.
217
241
.
8.
Bruneau
,
M.
,
Bruneau
,
A. M.
, and
Hamery
,
P.
, 1993, “
An Improved Approach to Modeling the Behaviour of Thin Fluid Films Trapped Between a Vibrating Membrane and a Backing Wall and Surrounded by a Reservoir at the Periphery
,”
Acta Acust. Acust.
,
1
, pp.
227
234
.
9.
Ungar
,
E. E.
, and
Carbonell
,
J. R.
, 1966, “
On Panel Vibration Damping Due to Structural Joints
,”
AIAA J.
,
4
, pp.
1385
1390
.
10.
Maidanik
,
G.
, 1966, “
Energy Dissipation Associated With Gas-Pumping in Structural Joints
,”
J. Acoust. Soc. Am.
,
40
, pp.
1064
1072
.
11.
Ungar
,
E. E.
, and
Maidanik
,
G.
, 1966, “
High Frequency Plate Damping Due to Gas Pumping in Riveted Joints
,”
J. Acoust. Soc. Am.
,
44
, pp.
292
295
.
12.
Xia
,
Z.
,
Liu
,
X.
, and
Shan
,
Y.
, 2011, “
Coupling Simulation Algorithm of Dynamic Feature of a Plate With Particle Dampers Under Centrifugal Loads
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041002
.
13.
Larbi
,
W.
,
Deu
,
J.-F.
,
Ciminello
,
M.
, and
Ohayon
,
R.
, 2010, “
Structural-Acoustic Vibration Reduction Using Switched Shunt Piezoelectric Patches: A Finite Element Analysis
,”
ASME J. Vibr. Acoust.
,
132
(
5
), p.
051006
.
14.
Yi
,
Y.-B.
, 2010, “
Finite Element Analysis of Thermoelastic Damping in Contour-Mode Vibrations of Micro- and Nanoscale Ring, Disk, and Elliptical Plate Resonators
,
ASME J. Vibr. Acoust.
,
132
(
4
), p.
041015
.
15.
Tanveer
,
M.
, and
Singh
,
A. V.
, 2010, “
Nonlinear Forced Vibrations of Laminated Piezoelectric Plates
,”
ASME J. Vibr. Acoust.
,
132
(
2
), p.
021005
.
16.
Yeh
,
J.-Y.
, and
Chen
,
L.-W.
, 2004, “
Vibration of a Sandwich Plate With a Constraining Layer and Electrorheological Fluid Core
,”
Compos. Struct.
,
65
, pp.
251
258
.
17.
Yeh
,
J.-Y.
, and
Chen
,
L.-W.
, 2005, “
Dynamic Stability of a Sandwich Plate With Constraining Layer and Electrorheological Fluid Core
,”
J. Sound Vib.
,
285
, pp.
637
652
.
18.
Yeh
,
J.-Y.
, and
Chen
,
L.-W.
, 2007, “
Finite Element Dynamic Analysis of Orthotropic Sandwich Plate With an Electrorheological Fluid Core
,”
Compos. Struct.
,
78
, pp.
368
376
.
19.
Vishnu Narayana
,
G.
, and
Ganesan
,
N.
, 2007, “
Critical Comparison of Viscoelastic Damping and Electrorheological Fluid Core Damping in Composite Sandwich Skew Plates
,”
Compos. Struct.
,
80
, pp.
221
223
.
20.
Yeh
,
J.-Y.
, 2007, “
Vibration Analyses of the Annular Plate With Electrorheological Fluid Damping Treatment
,”
Finite Elem. Anal. Des.
,
43
, pp.
965
974
.
21.
Yeh
,
J.-Y.
,
Chen
,
J.-Y.
,
Lin
,
C.-T.
, and
Liu
,
C.-Y.
, 2009, “
Damping and Vibration Analysis of Polar Orthotropic Annular Plates With ER Treatment
,”
J. Sound Vib.
,
325
, pp.
1
13
.
22.
Ramkumar
,
K.
, and
Ganesan
,
N.
, 2009, “
Vibration and Damping of Composite Box Column With Viscoelastic/Electrorheological Fluid Core and Performance Comparison
,”
Mater. Des.
,
30
, pp.
2981
2994
.
23.
Kirchhoff
,
G.
, 1868, “
Uber den Einfluss der Wärmeleitung in einem Gas auf die Schallbewe-gung
,”
Ann. Phys. (Leipzig)
,
134
, pp.
177
193
(English translation by
R. B.
Lindsay
, 1974,
Benchmark Papers in Acoustics: Physical Acoustics
,
R. B.
Lindsay
, ed.,
Dowden, Hutchinson & Ross
,
Stroudsburg, PA
, pp.
7
19
).
24.
Bruneau
,
M.
, 2006,
Fundamentals of Acoustics
,
ISTE Ltd
,
London, UK
.
26.
Marcy
,
S. J.
, 1990, “
Evaluating the Second Coefficient of Viscosity from Sound Dispersion or Absorption Data
,”
AIAA J.
,
28
(
1
), pp.
171
173
.
You do not currently have access to this content.