Conventional energy harvester typically consists of a cantilevered composite piezoelectric beam which has a proof mass at its free end while its fixed end is mounted on a vibrating base structure. The resulting relative motion between the proof mass and the base structure produces a mechanical strain in the piezoelectric elements which is converted into electrical power by virtue of the direct piezoelectric effect. In this paper, the harvester is provided with a dynamic magnifier consisting of a spring-mass system which is placed between the fixed end of the piezoelectric beam and the vibrating base structure. The main function of the dynamic magnifier, as the name implies, is to magnify the strain experienced by the piezoelectric elements in order to amplify the electrical power output of the harvester. With proper selection of the design parameters of the magnifier, the harvested power can be significantly enhanced and the effective bandwidth of the harvester can be improved. The theory governing the operation of this class of cantilevered piezoelectric energy harvesters with dynamic magnifier (CPEHDM) is developed using the finite element method. Numerical examples are presented to illustrate the merits of the CPEHDM in comparison with the conventional piezoelectric energy harvesters (CPEH). The obtained results demonstrate the feasibility of the CPEHDM as a simple and effective means for enhancing the magnitude and spectral characteristics of CPEH.

References

1.
Roundy
,
S.
, 2005, “
On the Effectiveness of Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
16
, pp.
809
823
.
2.
Anton
,
S. R.
, and
Sodano
,
H. A.
, 2007, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp.
R1
R23
.
3.
Priya
,
S.
, and
Inman
,
D. J.
, eds., 2009,
Energy Harvesting Technologies
,
Springer
,
New York
.
4.
Kong
,
N. A.
,
Ha
,
D. S.
,
Etrurk
,
A.
, and
Inman
,
D. J.
, 2010, “
Resistive Impedance Matching Circuit for Piezoelectric Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
, pp.
1293
1302
.
5.
Liang
,
J.
, and
Liao
,
W.-H.
, 2010, “
Impedance Matching for Improving Piezoelectric Energy Harvesting Systems
,”
Proc. SPIE
,
7643
, pp.
K
-1–
12
.
6.
Stephen
,
N. G.
, 2006, “
On the Maximum Power Transfer Theorem within Electromechanical Systems
,”
Proc. Inst. Mech. Eng., IMechE Conf., Part C:
,
220
, pp.
1261
1267
.
7.
Chen
,
Y.-C.
,
S.
Wu
, and
Chen
,
P.-C.
, 2004, “
The Impedance-Matching Design and Simulation on High Power Electro-Acoustical Transducer
,”
Sens. Actuators, A
,
115
, pp.
38
45
.
8.
Wu
,
W.-J.
,
Chen
,
Y.-Y.
,
Lee
,
B.-S.
,
He
,
J.-J.
, and
Pen
,
Y.-T.
, 2006, “
Tunable Resonant Frequency Power Harvesting Devices
,”
Proc. SPIE
,
6169
, pp.
81
92
.
9.
Badel
,
A.
,
Guyomar
,
D.
,
Lefeuvre
,
E.
, and
Richard
,
C.
, 2006, “
Piezoelectric Energy Harvesting Using A Synchronized Switch Technique
,”
J. Intell. Mater. Syst. Struct.
,
17
, pp.
831
839
.
10.
duToit
,
N.
, 2005, “
Modeling and Design of a MEMS Piezoelectric Vibration Energy Harvester
,” M.Sc. thesis, Massachusetts Institute of Technology, Cambridge, MA.
11.
duToit
,
N.
,
Wardle
,
B.
, and
Kim
,
S.-G.
, 2006, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integrated Ferroelectrics
,
71
, pp.
121
160
.
12.
Daqaq
,
M. F.
,
Renno
,
J. M.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
, 2007, “
Effects of System Parameters and Damping on an Optimal Vibration-Based Energy Harvester
,”
Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Honolulu, USA, 23–26 April 2007, Report No. AIAA-2007-2361.
13.
Renno
,
J. M.
,
Daqaq
,
M. F.
, and
Inman
,
D. J.
, 2009, “
On the Optimal Energy Harvesting from a Vibration Source
,”
J. Sound Vib.
,
320
, pp.
386
405
.
14.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008a, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
J. Vib. Acoust.
130
, pp.
041002
-1–041002-
15
.
15.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008b, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
,
19
, pp.
1311
1325
.
16.
Erturk
,
A.
, and
Inman
,
D. J.
, 2009, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting from Base Excitations
,”
Smart Mater. Struct.
,
18
(2), pp.
025009
–1-
18
.
17.
DeMarqui
, Jr.,
C.
,
Erturk
,
A.
, and
Inman
,
D. J.
, 2009, “
An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates
,”
J. Sound Vib.
,
327
, pp.
9
25
.
18.
Xue
,
H.
,
Hu
,
Y.
, and
Wang
,
Q.-M.
, 2008,“
Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs with Different Operating Frequencies
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
55
(
9
), pp.
2104
2108
.
19.
LeFeuvre
,
E.
,
Badel
,
A.
,
Richard
,
C.
, and
Guyomar
,
D.
, 2007, “
Energy Harvesting Using Piezoelectric Materials: Case of Random Vibrations
,”
Journal of Electroceramics
,
19
, pp.
349
355
.
20.
Moehlis
,
J.
,
DeMartini
,
B. E.
,
Rogers
,
J. L.
, and
Turner
,
K. L.
, 2009, “
Exploiting Nonlinearity to Provide Broadband Energy Harvesting
,”
Proceedings of the ASME 2009 Dynamic Systems and Control Conference
, Hollywood, California, Paper No. DSCC2009-2542.
21.
Adhikari
,
S.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
, 2009, “
Piezoelectric Energy Harvesting From Broadband Random Vibrations
,”
Smart Mater. Struct.
,
18
, pp.
115005
-1–115005-
5
.
22.
Cornwell
,
P. J.
,
Goethal
,
J.
,
Kowko
,
J.
, and
Damianakis
,
M.
, 2005, “
Enhancing Power Harvesting Using a Tuned Auxiliary Structure
,”
J. Intell. Mater. Syst. Struct.
,
16
, pp.
825
834
.
23.
Rastegar
,
J.
Pereira
,
C.
and
Nguyen
,
H.-L.
, 2006, “
Piezoelectric-based Power Sources for Harvesting Energy from Platforms with Low frequency Vibration
,”
Proc. SPIE
,
6171
, pp.
617101
–1-
7
.
24.
Ma
,
P. S.
,
Kim
,
J. E.
and
Kim
,
Y. Y.
, 2010, “
Power-Amplifying Strategy in Vibration-Powered Energy Harvesters
,”
Proc. SPIE
,
7643
, pp.
76430O
–1-
8
.
25.
Yang
,
Z.
, and
Yang
,
J.
, 2009, “
Connected Vibrating Piezoelectric Bimorph Beams as a Wide-Band Piezoelectric Power Harvester
,”
J. Intell. Mater. Syst. Struct.
,
20
, pp.
569
574
.
26.
Lee
,
S.
,
Youn
,
B. D.
, and
Jung
,
B. C.
, 2009, “
Robust Segment-Type Energy Harvester and Its Application to a Wireless Sensor
,”
Smart Mater. Struct.
,
18
, pp.
095021
–1-
12
.
27.
Erturk
,
A.
,
Renno
,
J. M.
, and
Inman
,
D. J.
, 2009, “
Modeling of Piezoelectric Energy Harvesting From an L-Shaped Beam-Mass Structure With an Application to UAVs
,”
J. Intell. Mater. Syst. Struct.
,
20
, pp.
529
544
.
28.
Xu
,
J. W.
,
Shao
,
W. W.
,
Kong
,
F. R.
, and
Feng
,
Z. H.
, 2010, “
Right-Angle Piezoelectric Cantilever with Improved Energy Harvesting Efficiency
,”
Appl. Phys. Lett.
,
96
(
15
), pp.
152904
–1-
3
.
29.
Ouled Chtiba
,
M.
,
Choura
,
S.
,
Nayfeh
,
A. H.
, and
El-Borgi
,
S.
, 2010, “
Vibration Confinement and Energy Harvesting in Flexible Structures using Collocated Absorbers and Piezoelectric Devices
,”
J. Sound Vib.
,
329
, pp.
261
276
.
30.
Aldraihem
,
O.
, and
Baz
,
A.
, 2011, “
Energy Harvester with a Dynamic Magnifier
,”
J. Intell. Mater. Syst. Struct.
,
22
(
6
), pp.
521
530
.
31.
Aladwani
,
A.
,
Aldraihem.
O.
, and
Baz
,
A.
, 2011, “
A Distributed Parameter Cantilevered Piezoelectric Energy Harvester with a Dynamic Magnifier
,”
Journal of Mechanics of Advanced Materials and Structures
(submitted).
32.
ANSI/IEEE, 1987, American National Standards/Institute of Electrical and Electronics Engineers “
Standard on Piezoelectricity
,” Report No. ANSI/IEEE STD: 176-1987.
33.
Arafa
,
M.
,
Akl
,
W.
,
Majeed
,
M.
,
Al-Hussain
,
K.
, and
Baz
,
A.
, 2010, “
Energy Harvesting of Gas Pipeline Vibration
,”
Proc. SPIE
,
7643
, pp.
76430L
–1-
12
.
34.
Liao
,
Y.
, and
Sodano
,
H. A.
, 2008, “
Model of a Single Mode Energy Harvester and Properties for Optimal Power Generation
,”
Smart Mater. Struct.
,
17
, pp.
065026
–1-
14
.
You do not currently have access to this content.