This work determines the time-varying impulsive loads, called inputs, in a nonlinear system using two novel input estimation inverse algorithms. Both algorithms use the extended Kalman filter with two different recursive estimators to determine impulsive loads. The extended Kalman filter generates the residual innovation sequences. The estimators use the residual innovation sequences to evaluate the magnitudes and, therefore, the onset time histories of the impulsive loads. Based on the two regression equations, a recursive least-squares estimator with a tunable fading factor is called a conventional input estimation with an adaptive weighting fading factor called an adaptive weighting input estimation. Both are used to estimate on-line inputs involving measurement noise and modeling errors. Numerical simulations of a nonlinear system, Duffing’s equation, demonstrate the accuracy of the proposed methods. Simulation results show that the proposed methods accurately estimate impulsive loads, and the AWIE approach has superior robust estimation capability than the CIE method in the nonlinear system.

References

References
1.
Stevens
,
K. K.
, 1987, “
Force Identification Problems: An Overview
,”
Proceedings of the 1987 SEM Spring Conference on Experimental Mechanics
,
Houston
,
Texas
, June 14–19, pp.
838
844
.
2.
Simonian
,
S. S.
, 1981, “
Inverse Problems in Structural Dynamics: Theory
,”
Int. J. Numer. Methods Eng.
,
17
, pp.
357
365
.
3.
Simonian
,
S. S.
, 1981, “
Inverse Problems in Structural Dynamics: Applications
,”
Int. J. Numer. Methods Eng.
,
17
, pp.
367
386
.
4.
Wang
,
M. L.
, and
Kreitinger
,
T. J.
, 1994, “
Identification of Force From Response Data of a Nonlinear System
,”
Soil Dyn. Earthquake Eng.
,
13
, pp.
267
280
.
5.
Huang
,
C. H.
, 2001, “
An Inverse Non-Linear Force Vibration Problem of Estimating the External Forces in a Damped System With Time-Dependent System
,”
J. Sound Vib.
,
242
, pp.
749
765
.
6.
Ray
,
L. R.
, 1995, “
Nonlinear State and Tire Force Estimation for Advance Vehicle Control
,”
IEEE Trans. Control Syst. Technol.
,
3
, pp.
117
124
.
7.
Ray
,
L. R.
, 1997, “
Nonlinear Tire Force Estimation and Road Friction Identification: Simulation and Experiments
,”
Automatica
,
33
, pp.
1819
1833
.
8.
Bolzern
,
P.
,
Cheli
,
G.
, and
Resta
,
F.
, 1999, “
Estimation of the Non-Linear Suspension Tyre Cornering Forces From Experimental Road Test Data
,”
Veh. Syst. Dyn.
,
31
, pp.
23
34
.
9.
Huh
,
K.
, and
Kim
,
J.
, 2001, “
Active Steering Control Based on the Estimated Tire Force
,”
Trans. ASME
, J. Dyn. Syst. Meas.,
123
, pp.
505
511
.
10.
Siegrist
,
P. M.
, and
Mcaree
,
P. M.
, 2006, “
Tyre-Force Estimation by Kalman Inverse Filtering Applications to Off-Highway Mining Trucks
,”
Veh. Syst. Dyn.
,
44
(
12
), pp.
921
937
.
11.
Khalil
,
M.
,
Sarkar
,
A.
, and
Adhikari
,
S.
, 2010, “
Tracking Noisy Limit Cycle Oscillation With Nonlinear Filters
,”
J. Sound Vib.
,
329
(
2
), pp.
150
170
.
12.
Khalil
,
M.
,
Sarkar
,
A.
, and
Adhikari
,
S.
, 2009, “
Nonlinear Filters for Chaotic Oscillatory Systems
,”
Nonlinear Dyn.
,
55
(
1–2
), pp.
113
137
.
13.
Namdeo
,
V.
, and
Manohar
,
C. S.
, 2007, “
Nonlinear Structural Dynamical System Identification Using Adaptive Particle Filters
,”
J. Sound Vib.
,
306
, pp.
524
563
.
14.
Ma
,
C. K.
,
Tuan
,
P. C.
,
Lin
,
D. C.
, and
Liu
,
C. S.
, 1998, “
A Study of an Inverse Method for the Estimation of Impulsive Loads
,”
Int. J. Syst. Sci.
,
29
, pp.
663
672
.
15.
Ma
,
C. K.
,
Chang
,
J. M.
, and
Lin
,
D. C.
, 2003, “
Input Forces Estimation of Beam Structures by an Inverse Method
,”
J. Sound Vib.
,
259
(
2
), pp.
387
407
.
16.
Ma
,
C. K.
, and
Lin
,
D. C.
, 2000, “
Input Forces Estimation of a Cantilever Beam
,”
Inverse Probl. Eng.
,
8
, pp.
511
528
.
17.
Ma
,
C. K.
,
Tuan
,
P. C.
,
Chang
,
J. M.
, and
Lin
,
D. C.
, 2003, “
Adaptive Weighting Inverse Method for the Estimation of Input Loads
,”
Int. J. Syst. Sci.
,
34
, pp.
181
194
.
18.
Huber
,
P. J.
, 1983, “
Minimum Aspects of Bounded Influence Regression (With Discussion)
,”
J. Am. Stat. Assoc.
,
78
, pp.
66
80
.
19.
Liu
,
C. Y.
,
Kung
,
M. C.
,
Chen
,
J. C.
, and
Chiang
,
S. M.
, 1993, “
New Robust and Flexible Parameter Estimation Method
,”
J. Guid. Control Dyn.
,
16
, pp.
441
413
.
20.
Mendel
,
J. M.
, 1987,
Lessons in Digital Estimation Theory
,
Prentice-Hall
,
Englewood Cliffs, NJ.
21.
Nafeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley Inter-Science
,
New York.
22.
Hagedorn
,
P.
, 1981,
Non-Linear Oscillations
,
Prentice-Hall
,
Englewood Cliffs, NJ.
23.
Vidyasagar
,
M.
, 1993,
Nonlinear Systems Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
24.
Slavks
Mitić
, 1997, “
Dynamics of the Duffing Oscillator With Impact
,”
Facta Universitatis
,
1
(
2
), pp.
65
72
.
25.
Mendel
,
J. M.
, 1995,
Lessons in Estimation Theory for Signal Processing, Communications, and Control
,
Prentice-Hall
,
Englewood Cliffs, NJ.
26.
Maybeck
,
P. S.
, 1979,
Stochastic Models, Estimation, and Control
,
Academic Press
,
New York
, Vol.
2
.
27.
Kalman
,
R. E.
, 1960, “
A New Approach to Linear Filtering and Predicting Problem
,”
J. Basic Eng.
,
82
, pp.
35
45
.
28.
Jazwinski
,
A. H.
, 1970,
Stochastic Processes and Filtering Theory
,
Academic Press
,
New York
.
29.
Evensen
,
G.
, 2006,
Data Assimilation: The Ensemble Kalman Filter
,
Springer
,
Berlin.
30.
Hou
,
M.
, and
Xian
,
S.
, 1989, “
Comments on Tracking a Maneuvering Target Using Input Estimation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
25
, p.
280
.
31.
Hsia
,
T. C.
, 1979,
System Identification Least-Square Method
,
Lexington Books
,
Lanham.
32.
Chan
,
Y. T.
,
Hu
,
A. G.
, and
Plant
,
J. B.
, 1979, “
A Kalman Filter Based Tracking Scheme With Input Estimation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
15
, pp.
237
244
.
33.
Jiang
,
Z. P.
, 2001, “
New Results in the Feedback Control of Duffing’s Equation
,”
Proceedings of the 40th IEEE Conference on Decision and Control
,
Orlando
,
Florida
, Dec., pp.
704
707
.
34.
Gelb
,
A.
,
Kasper
,
J. F.
,
Nash
,
R. A.
,
Price
,
C. F.
, and
Sutherland
,
A. A.
, 1978,
Applied Optimal Estimation
,
MIT Press
,
Cambridge, MA.
35.
Bendat
,
J. S.
, and
Pierson
,
A. G.
, 1980,
Engineering Applications of Correlation and Spectral Analysis
,
John Wiley
,
New York.
36.
Ljung
,
L.
, 1987,
Lessons in Digital Estimation Theory
,
Prentice-Hall
,
Englewood Cliffs, NJ.
You do not currently have access to this content.