To accurately predict the dynamics of most structures, a representation of damping must be used. This paper focuses on structural damping and the identification of structural damping for complex systems with cyclic symmetry such as bladed disks and integrated (one-piece) bladed disks (blisks) with mistuning. The damping identification methodology is demonstrated together with two measurement filters for a complex structure, namely an integrated bladed disk with stiffness mistuning.

References

References
1.
Chen
,
S. Y.
,
Ju
,
M. S.
, and
Tsuei
,
Y. G.
, 1996, “
Estimation of Mass, Stiffness and Damping Matrices From Frequency Response Functions
,”
J. Vib. Acoust.
,
118
, pp.
78
82
.
2.
Adhikari
,
S.
, and
Phani
,
A. S.
, 2009, “
Experimental Identification of Generalized Propotional Viscous Damping Matrix
,”
J. Vib. Acoust.
,
131
, pp.
011008
.
3.
Chen
,
S. Y.
, 2005, “
A System Matrices Reduction Method for Damped Systems
,”
JSME Int. J. Ser. C
,
48
(
4
), pp.
681
687
.
4.
Kim
,
K.-S.
,
Kang
,
Y. J.
, and
Yoo
,
J.
, 2008, “
Structural Parameters Identification Using Improved Normal Frequency Response Function Method
,”
Mech. Syst. Signal Process.
,
22
, pp.
1858
1868
.
5.
Lancaster
,
P.
, 1961, “
Expressions for Damping Matrices in Linear Vibration Problems
,”
J. Aerosp. Sci.
,
28
, p.
256
.
6.
Adhikari
,
S.
, 2002. “
Lancaster’s Method for Damping Identification Revisited
,”
J. Vib. Acoust.
,
124
, pp.
617
627
.
7.
Alvin
,
K. F.
,
Peterson
,
L. D.
, and
Park
,
K. C.
, 1997, “
Extraction of Normal Modes and Full Modal Damping From Complex Modal Parameters
,”
AIAA
,
35
(
7
), pp.
1187
1193
.
8.
Roemer
,
M. J.
, and
Mook
,
D. J.
, 1992, “
Mass, Stiffness, and Damping Matrix Identification: An Integrated Approach
,”
J. Vib. Acoust.
,
114
, pp.
358
363
.
9.
Minas
,
C.
, and
Inman
,
D. J.
, 1991, “
Identification of a Nonproportional Damping Matrix From Incomplete Modal Information
,”
J. Vib. Acoust.
,
113
, pp.
219
224
.
10.
Adhikari
,
S.
, and
Woodhouse
,
J.
, 2001, “
Identification of Damping: Part 1, Viscous Damping
,”
J. Sound Vib.
,
243
(
1
), pp.
43
61
.
11.
Adhikari
,
S.
, and
Woodhouse
,
J.
, 2001, “
Identification of Damping: Part 2, Non-Viscous Damping
,”
J. Sound Vib.
,
243
(
1
), pp.
63
88
.
12.
Adhikari
,
S.
, and
Woodhouse
,
J.
, 2002, “
Identification of Damping: Part 3, Symmetry-Preserving Methods
,”
J. Sound Vib.
,
251
(
3
), pp.
477
490
.
13.
Adhikari
,
S.
, and
Woodhouse
,
J.
, 2002, “
Identification of Damping: Part 4, Error Analysis
,”
J. Sound Vib.
,
251
(
3
), pp.
491
504
.
14.
Lee
,
J. H.
, and
Kim
,
J.
, 2001, “
Development and Validation of a New Experimental Method to Identify Damping Matrices of a Dynamic System
,”
J. Sound Vib.
,
246
(
3
), pp.
505
524
.
15.
Sum
,
K. S.
, and
Pan
,
J.
, 2002, “
On the Steady-State and the Transient Decay Methods for the Estimation of Reverberation Time
,”
J. Acoust. Soc. Am.
,
112
(
6
), pp.
2583
2588
.
16.
Bloss
,
B. C.
, and
Rao
,
M. D.
, 2005, “
Estimation of Frequency-Averaged Loss Factors by the Power Injection and the Impulse Response Decay Methods
,”
J. Acoust. Soc. Am.
,
117
(
1
), pp.
240
249
.
17.
Langhe
,
K. D.
, and
Sas
,
P.
, 1996, “
Statistical Analysis of the Power Injection Method
,”
J. Acoust. Soc. Am.
,
100
(
1
), pp.
294
303
.
18.
Phani
,
A. S.
, and
Woodhouse
,
J.
, 2007, “
Viscous Damping Identification in Linear Vibration
,”
J. Sound Vib.
,
303
(
3-5
), pp.
475
500
.
19.
Prandina
,
M.
,
Mottershead
,
J.
, and
Bonisoli
,
E.
, 2009, “
An Assessment of Damping Identification Methods
,”
J. Sound Vib.
,
323
, pp.
662
676
.
20.
Yang
,
M.-T.
, and
Griffin
,
J. H.
, 2001, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines and Power
,
123
(
4
), pp.
893
900
.
21.
Feiner
,
D. M.
, and
Griffin
,
J. H.
, 2002, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
J. Turbomach.
,
124
(
4
), pp.
597
605
.
22.
Feiner
,
D.
, and
Griffin
,
J.
, 2004, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part I: Theory
,”
J. Turbomach.
,
126
(
1
), pp.
150
158
.
23.
Lim
,
S.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
, 2007, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.
24.
Madden
,
A.
,
Castanier
,
M.
, and
Epureanu
,
B.
, 2009, “
Reduced-Order Model Construction Procedure for Robust Mistuning Identification of Blisks
,”
AIAA J.
,
46
(
11
), pp.
2890
2898
.
25.
Mignolet
,
M.
,
Rivas-Guerra
,
A.
, and
Delor
,
J.
, 2001, “
Identification of Mistuning Characteristics of Bladed Disks From Free Response Data—Part I
,”
J. Eng. Gas Turbines Power
,
123
(
2
), pp.
395
403
.
26.
Holland
,
D.
,
Epureanu
,
B.
, and
Filippi
,
S.
, 2010, “
Damping Identification for Mistuned Blisks
,” in Proceedings of the ASME International Design Engineering Technical Conferences,
ASME
, pp.
1
12
.
27.
Lim
,
S.-H.
, 2005, “
Dynamic Analysis and Design Strategies for Mistuned Bladed Disks,”
Ph.D. thesis, University of Michigan, Ann Arbor, MI.
28.
Judge
,
J.
Pierre
,
C.
and
Ceccio
,
S.
, 2009, “
Experimental Mistuning Identification in Bladed Disks Using a Component-Mode-Based Reduced-Order Model
,”
AIAA J.
,
47
(
5
), pp.
1277
1287
.
You do not currently have access to this content.